Theory of Buildings and Applications in Number Theory

Xuecai Ma Westlake University

2024.12.26

■ Buildings

Applications

🕫 Buildings in Higher Number Theory

Buildings

Reflection Groups

- **Solution** Let V be finite-dimensional real vector space with an inner product, H is a hyperplane in V.
- The **reflection** with respect to *H* is the linear transformation $s_H : V \to V$ which is identity on *H* and is multiplication by -1 on the orthogonal complement H^{\perp} of *H*.
- □ If α is a nonzero vector in H^{\perp} , so that $H = \alpha^{\perp}$, we will write s_{α} instead of s_{H} .

$$s_{\alpha}(x) = s_{\alpha}(h + \lambda \alpha) = h - \lambda \alpha = x - 2\lambda \alpha = x - 2\frac{\langle \alpha, x \rangle}{\langle \alpha, \alpha \rangle} \alpha.$$

- A finite reflection group is a finite group W of invertible linear transformations of V generated by reflections s_H, where H ranges over a set of hyperplanes.
 Finite reflection groups have been completely classified up to isomorphism:
 - **1**. Type $A_n (n \ge 1)$;
 - 2. Type $C_n (n \ge 2)$ (This corresponds to root systems of type B_n and type C_n);
 - 3. Type $D_n (n \ge 4)$;
 - 4. Type E_6, E_7, E_8 ;
 - **5**. Type *F*₄;
 - **6**. Type *G*₂;
 - 7. Type H_3 , H_4 (This doesn't correspond to any root system).

Chamber Complexes of Finite Reflection Groups

Let $\mathcal{H} = \{H_i\}_{i \in I}$ be a family of hyperplanes in *V*. For each $i \in I$, suppose that $f_i : V \to \mathbb{R}$ is a nonzero linear function such that H_i is defined by $f_i = 0$.

■ A cell in *V* with respect to the family \mathcal{H} is a nonempty set *A* obtained by choosing for each *i* ∈ *I*, a sign $\sigma_i \in \{-, +, 0\}$, such that

$$A = \bigcap_{i \in I} U_i,$$

- 1. $U_i = H_i = \{x \in V | f_i(x) = 0\}$, if $\sigma_i = 0$, 2. $U_i = \{x \in V | f_i(x) > 0\}$, if $\sigma_i = +$, 3. $U_i = \{x \in V | f_i(x) < 0\}$, if $\sigma_i = -$.
- The cells such that $\sigma_i \neq 0$ are called chambers. We let $\Sigma(\mathcal{H})$ denote the set of all cells and let $\mathcal{C}(\mathcal{H})$ be the subset of all chambers.

Let *C* be a fixed chamber, called the fundamental chamber, and let *S* be the set of reflections with respect to walls of *C*.

- **The set** S generates W.
- The action of *W* is simply transitive on the set C of chambers. Thus there is a 1-1 correspondence between W and C defined by $w \leftrightarrow wC$.

Suppose that *G* is a group and *S* is a set of generators of *G* such that $S = S^{-1}$ and $e \notin S$. Then the **Cayley graph** of (G, S) is the graph whose vertex set is *G* and whose edges are the pairs (g, h) such that h = gs for some $s \in S$.

D The chamber graph of $\Sigma(W, S)$ is isomorphic to the Cayley graph of (W, S).

Coxeter Groups

A Coxeter group is a group W which has a generator set $S = \{r_1, r_2, \dots\}$ such that W can be defined by

$$\langle r_1, r_2, \cdots | (r_i r_j)^{m_{ij}} = 1 \rangle.$$

where $m_{ii} = 1$ and $m_{ij} = m_{ji} \le \infty$, if $i \ne j$. The pair (W, S) where W is a Coxeter group with generators $S = \{r_1, \dots, \dots\}$ is called a Coxeter system.

- For a Coxeter system (W, S), a standard coset in W is a coset of the form wW_J with $w \in W$ and $W_J := \langle J \rangle$ for some subset $J \subset S$.
- Let $\Sigma(W, S)$ be the poset of standard cosets in *W*, ordered by reverse inclusion. Thus $B \le A$ in Σ if and only if $B \supseteq A$ as subsets of *W*, in which case we say that *B* is a face of *A*. We call $\Sigma(W, S)$ the Coxeter complex associated to (W, S).
- A simplicial complex Σ is called a Coxeter complex if it is isomorphic to $\Sigma(W, S)$ for some Coxeter system (W, S).

Buildings

Definition

A building is a simplicial complex Δ that can be expressed as the union of subcomplexes Σ (called apartments) satisfying the following axioms:

- 1. Each a partment Σ is a Coxter complex.
- 2. For any two simplicies $A, B \in \Delta$, there is an apartment containing both of them.
- 3. If Σ and Σ' are two apartments containing *A* and *B*, then there is an isomorphism $\Sigma \to \Sigma'$ fixing *A* and *B* pointwise.

Buildings as Chamber Complexes

- Let Δ be a finite dimensional simplicial complex. A **gallery** is a sequence of maximal simplicies in which any two consecutive one are **adjacent**, i.e., distinct and have a common codimension 1 face.
- Solution We say that Δ is a **chamber complex** if all maximal simplicies have the same dimension and any two can be connected by a gallery.
- A **chamber** in a chamber complex is a maximal simplex. A codimension 1 face of a chamber will be called a **panel**.
- A chamber complex is said to be **thin** if each panel is a face of exactly two chambers.
- A chamber complex is said to be **thick** if each panel is a face of at least 3 chambers.
- For a chamber complex Δ , we let $\mathcal{C}(\Delta)$ denote the set of its chambers. Then there is well-defined **distance function** $\delta(-, -)$ on $\mathcal{C}(\Delta)$, which is defined to be the minimal length of the galleries which joined these two chambers.

Buildings as W-Metric Spaces

A building of type (W, S) is as pair (\mathcal{C}, δ) consisting of a nonempty set \mathcal{C} , whose elements are called chambers, together with a map $\delta : \mathcal{C} \times \mathcal{C} \to W$, called the Weyl distance function, which satisfies the following conditions for all $C, D \in \mathcal{C}$:

1.
$$\delta(C, D) = 1$$
 if and only if $C = D$.

- 2. If $\delta(C, D) = w$ and $C' \in C$ satisfies $\delta(C', C) = s \in S$, then $\delta(C', D) = sw$ or w. If in addition l(sw) = l(w) + 1, then $\delta(C', D) = sw$.
- 3. If $\delta(C, D) = w$, then for any $s \in S$, there exists a chamber $C' \in C$ such that $\delta'(C', C) = s$ and $\delta(C', D) = sw$.
- The axioms here is very similar to the axioms of metric spaces. We therefore sometimes call (C, δ) a *W*-metric space.

Metric Realizations of Buildings

- □ Let *Z* be a metric space with a family of nonempty subsets Z_s , $s \in S$. We can think *Z* as the model for a closed chamber, and Z_s be its *s*-panel.
- We define a equivalence relation on $\mathcal{C}(\Delta) \times Z$ by setting $(C, z) \simeq (D, z)$ if $\delta(C, D) = s$ and $z \in Z_s$. This is equivalent to say $(C, z) \sim (C', z')$ if and only if z = z' and there is a gallery $C = C_0, \dots, C_l = C'$ such that $\delta(C_{i-1}, C_i) = s_i \in S$ and $z \in Z_{s_i}$ for $i = 1, \dots, l$.
- For a building Δ , we define the *Z*-realization of Δ , denoted as $X = X(Z, \Delta)$ to be the quotient of $\mathcal{C}(\Delta) \times Z$ by the equivalence relation defined above.
- **There is a metric on** *X* such that $\{C\} \times Z$ is isometric to *Z*.

Group Actions on Buildings

- We say an action of *G* on Δ is **strongly transitive** if *G* acts transitively on the sets of pairs (Σ, C) consisting of an apartment $\Sigma \in \Delta$ and a chamber $C \in \Sigma$.
- Assume that the *G*-action on Δ is strongly transitive, and we choose a pair (Σ, C) . We will often refer to *C* as the fundamental chamber and to Σ as the fundamental apartment.
- **We now define the three subgroups of** *G*:

$$egin{aligned} B &:= \{g \in G | gC = C\}, \ N &:= \{g \in G | g\Sigma = \Sigma\}, \ T &:= \{g \in G | g ext{ fixes } \Sigma ext{ pointwise}\}. \end{aligned}$$

We fined that *T* is a normal subgroup of *N*, being the kernel of the homomorphism $f : N \to W$ induced by the action of *N* on Σ . We have $W \cong N/T$ since *f* is surjective.

■ We say an action of *G* on a building Δ is **Weyl transitive** if for each $w \in W$, the action is transitive on the set of ordered pairs (C, D) of chambers with $\delta(C, D) = w$.

The Bruhat Decomposition

- Suppose that the action of G on Δ is Weyl transitive, and let B be the stabilizer of a chamber C. Then there is a bijection on $B \setminus G/B \to W$ given by $BgB \mapsto \delta(C, gC)$.
- Let *G* be group, $B \subset G$ a subgroup, (W, S) a Coxeter system, and $C: W \to B \setminus G/B$ be map of set. They satisfying the following axioms:
 - 1. C(w) = B if and only if w = 1.

2.
$$C: W \to B \setminus G/B$$
 is surjective, i.e., $G = \bigcup_{w \in W} C(w)$

3. For any $s \in S$ and $w \in W$,

$$C(sw) \subset C(s)C(w) \subset C(sw) \cup C(w).$$

- Standard parabolic subgroups: $P_J := \bigcup_{w \in W_J} C(w)$, $W_J = \langle J \rangle$, $J \subset S$.
- Given a Bruhat decomposition of (G, B), we denote by $\Delta(G, B)$ the poset of the standard parabolic subgroups, ordered by the reverse inclusion.
- $\Delta = \Delta(G, B)$ is a building, and the natural action of G on Δ by left multiplication is Weyl transitive.

BN-Pairs

Let *B* and *N* be two subgroups of a group *G*, we say *B* and *N* is a BN-pair if *B* and *N* generate *G*, the intersection $T := B \cap N$ is normal in *N*, and the quotient W := N/T admits a set of generators *S* such that the following two conditions hold:

- For $s \in S$ and $w \in W$, $sBw \subseteq BswB \cup BwB$.
- **For** $s \in S$, $sBs^{-1} \not\leq B$.

The group W will be called the Weyl group associated to the BN-pair. We also say that the quadruple (G, B, N, S) is a Tits system.

Suppose that we have *BN*-pair in *G*, then the generating set *S* is uniquely determined, and (W, S) is a Coxeter system. There is a thick building $\Delta = \Delta(G, B)$ that admits a strongly transitive *G*-action, such that *B* is a stabilizer of a fundamental chamber and *N* stabilizers a fundamental apartment and is transitive on its chambers.

Applications

Buildings Associated to Vector Spaces

Solution Let *V* be a vector space of dimension $n \ge 2$ over an arbitrary field. **Solution** We let $\Delta = \Delta(V)$ be the flags of *V*, which are chains

 $V_1 \subset V_2 \subset \cdots \subset V_k$

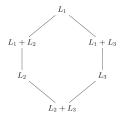
of nonzero proper subspaces of V.

 \blacksquare The maximal simplices of Δ are the chains

$$V_1 \subset V_2 \subset \cdots \subset V_{n-1}$$

with $\dim V_i = i$.

Go An apartment when n = 3



Building of Semisimple Algebraic Groups

Suppose that *G* is a semisimple algebraic group over an arbitrary field *k*. We construct a building $\Delta(G)$ by the Tits system (G, B, N, S) related to *G*.

- **I** If *k* is algebraically closed. We take *B* to be a Borel subgroup of *G*, *T* a maximal torus *T* contained in *B*, and let $N = N_G(T)$.
 - 1. The vertices of $\Delta(G)$ are maximal proper parabolic subgroups of G.
 - 2. Vertices P_1, \dots, P_m forms the vertices of a simplex σ if and only if the intersection
 - $P_1 \cap \cdots \cap P_m$ is also a parabolic subgroup, which corresponds to the simplex σ .
 - 3. The chambers of $\Delta(G)$ correspond to the Borel subgroups of G.
 - 4. The apartments of $\Delta(G)$ correspond to the maximal tori of *G*.
- If *k* is not algebraically closed. We take *B* to be a minimal parabolic subgroup of *G*, *T* a maximal split torus contained in *B*, and let $N = N_G(T)$.
 - 1. The vertices of $\Delta(G)$ are maximal proper parabolic subgroups of G.
 - 2. Vertices P_1, \cdots, P_m forms the vertices of a simplex σ if and only if the intersection
 - $P_1 \cap \cdots \cap P_m$ is also a parabolic subgroup, which corresponds to the simplex σ .
 - 3. The chambers of $\Delta(G)$ correspond to the minimal parabolic subgroups of G.
 - 4. The apartments of $\Delta(G)$ correspond to the maximal split tori of G.

Buildings of Reductive Groups over Local Fields

G be a connected reductive group over a nonarchimedean locally compact field *F*. The apartments of $\Delta(G)$ are

$$A = (X_*(S)/X_*(\mathbb{C})) \otimes \mathbb{R}$$

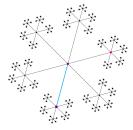
from maximal split tori of G.

■ We define a equivalence relation ~ on the set $G \times A$ by $(g, x) \sim (h, y)$ if there exists an $n \in N_G(S)$ such that nx = y and $g^{-1}h_n \in U_x$. The set of equivalence classes is defined by

$$X := G \times A / \sim .$$

We call *X* the **Bruhat-Tits building** of *G*.

D The Bruhat-Tits Building of $SL_2(\mathbb{Q}_5)$



Representations of p-Adic Reductive Groups

Suppose that *K* is a compact open subgroup of *G*. The Hecke-algebra $\mathcal{H}(G, K)$ is the algebra of complex-valued functions *f* on *G* satisfying the following conditions:

1. f(kgk') = f(g) for any $g \in G$ and $k, k' \in K$;

2. *f* is zero outside of a union of a finite number of *KgK*.

The Hecke-algebra of *G* is defined to be

 $\mathcal{H}(G) = \cup_K \mathcal{H}(G, K),$

where *K* runs through a neighbourhood basis of 1 which consists of compact open subgroups of *G*.

- There is a bijection between the set of isomorphism classes of irreducible smooth representations of *G* and the set of isomorphism classes of non-degenerate simple $\mathcal{H}(G)$ -module.
- In general, for a compact open subgroup *I* of *G*, we have the following adjunction:

 $(\cdot)^{I} : \operatorname{Rep}_{R}^{\infty}(G) \leftrightarrows \operatorname{Mod}_{H} : \operatorname{Ind}_{I}^{G}(R) \otimes_{H} (\cdot).$

When $R = \mathbb{C}$ and I is the pro-p Iwahori subgroup, then the above functors give an equivalence between the category Mod_H and the full subcategory Rep_G^I of $\operatorname{Rep}_R^{\infty}(G)$.

Suppose that \mathcal{X} is a building. A coefficient system on a building \mathcal{X} is a family $(\mathcal{F}_F, (r_{F'}^F)_{F' \subset \overline{F}})$ indexed by the faces of \mathcal{X} , where $\mathcal{F}_F \in \operatorname{Mod}_R$ and for any faces F and F' such that $F' \subset \overline{F}$, there is a R-module map $r_{F'}^F : \mathcal{F}_F \to \mathcal{F}_{F'}$. These morphisms must satisfying the following two properties:

$$f_F^F = \operatorname{Id}_{\mathcal{F}_F}$$
 and $r_{F''}^F = r_{F''}^{F'} \circ r_{F'}^F$

for any faces $F'' \subseteq \overline{F'} \subseteq \overline{F}$ of \mathcal{X} .

□ An object $\mathcal{F} \in \text{Coeff}(\mathcal{X})$ is called *G*-equivariant if it comes with a family of coefficient systems $\{c_g : \mathcal{F} \to g_*\mathcal{F}\}_{g \in G}$ such that

1.
$$c_1 = \mathrm{Id}_{\mathcal{F}}$$
,

2.
$$c_{gh}h_*c_g\circ c_h, \forall g,h\in G.$$

■ For a coefficient system \mathcal{F} , we define a *G*-equivariant sheaf $\mathbb{S}(\mathcal{F})$ as follows: For any open subset $\Omega \subseteq \mathcal{X}$, we define

$$\mathbb{S}(\mathcal{F})(\Omega) := \{ s : \Omega \to \coprod_{z \in \Omega} \mathcal{F}^*_{F_z} \text{ satisfying} \}$$

1.
$$\forall z \in \Omega, s(z) \in \mathcal{F}_{F_z}^*$$
,
2. $\forall z \in \Omega, \exists V \subset \Omega \operatorname{Star}(F_z)$ open neighborhood of z such that
 $\forall z' \in V, s(z') = (r_{F_z}^{F_{z'}})^*(s(z)).$

We define a functor

$$\mathcal{F}: \quad \operatorname{Mod}_H \to \operatorname{Coeff}_G(\mathcal{X})$$
 $M \mapsto \mathcal{F}(M),$

where
$$\mathcal{F}(M)_F = \operatorname{Im}(X^{I_F} \otimes_H M \xrightarrow{\tau_{M,F}} \operatorname{Hom}_H(\operatorname{Hom}_H(X^{I_F}, H), M)).$$

 \square The functor

$$\mathbb{S} \circ \mathcal{F}(.) : \mathrm{Mod}_H \to \mathrm{Shv}_G(\mathcal{X})$$

is fully faithful. The essential image of the functor \mathbb{S} : $\operatorname{Coeff}_{G}^{fg}(\mathcal{X}) \to \operatorname{Shv}_{G}(\mathcal{X})$ is the full subcategory of constructible *G*-equivariant sheaves on \mathcal{X} (Schneider-Stuhler, Kohlhaase). Buildings in Higher Number Theory

Higher Dimensional Local Fields

Definition

A 0-dimensional local field is a finite field.

For $n \ge 1$, a *n*-dimensional local field is a complete discrete valuation field whose residue field is a (n - 1)-dimensional local field.

One-dimensional local fields

- 1. R, C;
- 2. $\mathbb{F}_{q}((t));$
- 3. Finite extension of \mathbb{Q}_p .

Two-dimensional local fields

- 1. $\mathbb{F}_q((t_1))((t_2));$
- 2. E((t)) over a local nonarchimedean field E;
- 3. E((t)) over a local archimedean field E;
- 4. Finite extensions of $\mathbb{Q}_p\{\{t\}\}$.

Classification of n-Dimensional Local fields

Let F be a n-dimensional local field.

1. If char $F \neq 0$ then

$$F \cong F^{(n)}((t_1)) \cdots ((t_n)),$$

where $F^{(n)}$ is a finite field.

2. If char $F^{(n-1)} = 0$ then

$$F \cong F^{(n-1)}((t_1)) \cdots ((t_{n-1})),$$

where $F^{(n-1)}$ is a one-dimensional local field of characteristic 0.

3. In the remaining case, Let $2 \le r \le n$ be the unique integer such that $\operatorname{char} F^{(n-r)} = 0 \neq \operatorname{char} F^{(n+1-r)}$. Then *F* is isomorphic to a finite extension of

$$\mathbb{Q}{\{t_1\}}\cdots \{\{t_{r-1}\}\}((t_{r+1}))\cdots ((t_n))$$

where \mathbb{Q}_q is the unramified extension of \mathbb{Q}_p with residue field of $F^{(n)}$.

Rings of Integral Elements in Higher Local Fields

Go If n = 0, we define $\mathcal{O}_F^0 = F$.

If $n \ge 0$, we define $\mathcal{O}_F^n := \{x \in \mathcal{O}_F : \overline{x} \in \mathcal{O}_{\overline{F}}^{(n-1)}\}$, where $\mathcal{O}_{\overline{F}}^{(n-1)}$ is the rank n-1 ring of integers of \overline{F} , a field of discrete valuation of dimension $\ge n-1$.

$$F \supset \mathcal{O}_F = \mathcal{O}_F^{(1)} \supset \mathcal{O}_F^{(2)} \supset \cdots \supset \mathcal{O}_F^{(n)}.$$

Suppose that *F* is a complete valuation field, and $t \in F$ is uniformizer, then we have

$$F = \mathcal{O}_F[t^{-1}], \quad F^{\times} \cong \mathcal{O}_F^{\times} \times t^{\mathbb{Z}},$$

where $t^{\mathbb{Z}}$ denote the infinite cyclic group of F^{\times} generated by *t*.

- A sequence of n-local parameters $t_1, \dots, t_n \in F$ is a sequence of elements satisfying:
 - 1. t_n is a uniformizer of F.
 - 2. The reduction t_1, \dots, t_{n-1} of t_1, \dots, t_{n-1} form a sequence of local parameter for the filed \overline{F} of dimension n-1.
- Suppose that *F* is a n-dimensional, then we have

$$F = O_F^{(n)}[t_1^{-1}, \cdots, t_n^{-1}], \text{ and } F^{\times} \cong (O_F^n)^{\times} \times t_1^{\mathbb{Z}} \times \cdots \times t_n^{\mathbb{Z}}.$$

Higher Adelic Spaces

Let $B = \text{Spec}\mathcal{O}_K$ for a number filed K and let $\phi : X \to B$ be a *B*-scheme satisfying the following conditions:

- **Solution** X is integral, regular and dimension 2.
- **D** ϕ is proper and flat.
- The generic fibre X_K is a geometrically integral, smooth, projective curve over K. Fix a closed point $x \in X$, and a curve $y \subset X$, such that $x \in y \subset X$.

1.
$$p_{y,x} = \ker(\mathcal{O}_{X,x} \to \mathcal{O}_{y,x}).$$

2.
$$\phi$$
 : Spec $\mathcal{O}_{X,x} \to$ Spec $\mathcal{O}_{X,x}$.

3. For any $q \in \operatorname{Spec}(\mathcal{O}_{X,x})$, such that $q \cap \mathcal{O}_{X,x} = p_{y,x}$, we call this q a local branches of y at x, denote all this q as y(x).

•• $K_{x,q} := \operatorname{Frac}((\mathcal{O}_x)_q)$ is a two dimensional local field.

$$K_{x,y} := \prod_{q \in y(x)} K_{x,q}, \quad \mathcal{O}_{x,y} := \prod_{q \in y(x)} \mathcal{O}_{x,q}$$

$$E_{x,y} := \prod_{q \in y(x)} E_{x,q}$$
, where $E_{x,q}$ is the residue field of $K_{x,q}$.

$$k_{x,y} := \prod_{q \in y(x)} k_{x,q}$$
, where $k_{x,q}$ is the residue field of $E_{x,q}$.

■ We define a ring \mathbb{A}_y as the restricted product of the rings $K_{x,y}$ for *y* fixed and $x \in y$,

$$\mathbb{A}_y = \prod_{x \in y}' K_{x,y}.$$

We define the two-dimensional adele,

$$\mathbf{A}_X = \prod_{x \in y, y \subset X}^{"} K_{x,y}.$$

Automorphic Forms on Two-dimensional Adelic Spaces

For a reductive group *G*, let

$$\mathbb{T}_G = G(\mathbb{A}) \times G(\mathbb{A}) / V(G(\mathbb{A}) \times G(\mathbb{A})).$$

Let K_G be the image of the map

$$G(\mathbb{B}) \times G(K) \to G(\mathbb{A}) \times G(\mathbb{A}) / G(\mathbb{O}\mathbb{A}) \to \mathbb{T}_G$$

Irreducible representations of $G \times G$ in the space of continuous $\mathbb{C}((X))$ -valued functions on $\mathbb{T}_G/\mathbb{K}_G$, satisfying some restrictions, could be viewed as a candidate for unramified automorphic functions associated to G.

Buildings associated with Higher Local Fields (Parshin)

Let *K* be a n-dimensional local field, and let $\mathcal{O}' = \mathcal{O}_K^{(n)}$. Suppose that *V* is a vector space of dimension l + 1 over *K*. We will define the building of the group PGL(V).

$$\Delta(G, K/\cdots/k) = \bigcup_{0 \le m \le n} \Delta_{\bullet}[m]$$

where for n = 0,

$$\Delta_0[0] = \{ \text{nonzero proper subspaces } L \subset V \},$$

and for n > 0

$$\Delta_0[m] = \bigcup_{\text{Conditions}} \{ \langle L \rangle | L \cong \mathcal{O}_{i_1} \oplus \cdots \oplus \mathcal{O}_{i_{l+1}} \text{ as } \mathcal{O}' \text{-modules} \}.$$

Here $\langle L \rangle$ is a class of \mathcal{O}' -module *L* up to *aL*, $a \in K^*$, and the conditions means that the union is over all

$$0 \le i_{l+1} \le \cdots, \le i_1 = n$$
 for all $1 \le k \le l+1, i_k =$ either n or m.

For i > 0, we define

$$\Delta_{i}[m] = \left\{ \begin{array}{c} (\langle L_{0} \rangle, \cdots, \langle L_{i+1} \rangle) | \langle L_{0} \rangle, \cdots, \langle L_{i+1} \rangle \in \Delta_{0}[m]. \\ \text{and belongs to a maximal chain of } \mathcal{O}'\text{-submodules.} \end{array} \right\}$$

□ A set $\{L_{\alpha}\}_{\alpha \in I}$ of \mathcal{O}' -modules in *V* is called a chain if

1. for every $\alpha \in I$ and every $a \in K^*$, there exits α such that $aL_{\alpha} = L_{\alpha'}$, 2. the set $\{L_{\alpha}\}_{\alpha \in I}$ is totally ordered by the inclusion.

The vertices of PGL(2) **over a 2-dimensional local field** *K*.

 $egin{array}{cccc} \Delta_0[2] & 22 & \langle O \oplus O
angle \ \Delta_0[1] & 21 & \langle O \oplus \mathcal{O}
angle \ \Delta_0[0] & 20 & \langle O \oplus K
angle \end{array}$

The vertices of PGL(3) **over a 2-dimensional local field** *K*.

$\Delta_0[2]$	222	$\langle O \oplus O \oplus O \rangle$
$\Delta_0[1]$	221	$\langle O \oplus O \oplus 0 \rangle$
	211	$\langle O \oplus \mathbb{O} \oplus \mathbb{O} \rangle$
$\Delta_0[0]$	220	$\langle O \oplus O \oplus K \rangle$
	200	$\langle O\oplus K\oplus K angle$

- Suppose that *S* is a smooth projective algebraic surface over \mathbb{F}_q . We fix a point $P \in S$ and an irreducible curve *C* such that $P \in C$.
- •• (Parshin) Let $\mathcal{M}^{\circ} \subset \mathcal{M} = \operatorname{Bun}_{G}$ be the moduli space of \mathcal{O}_{S} -module F, such that F is trivial rank 2 on $X \setminus C$. Let $\mathcal{M}^{\circ\circ} \subset \mathcal{M}^{\circ}$ be the subspace corresponds to those which are locally trivial outside P. Then we have a map

$$\Psi: \mathcal{M}^{\circ \circ} \to \Delta_0(S, C, P)[2].$$

Let $V \in \mathcal{M}$ and $W \subset V_C$, $\mathcal{A}_C(V, W)$ denote the subsheaf of V consisting of sections whose value at C is contained in W. To any vector bundle L on *C*, we define the Hecke operators :

$$T_L : \mathbb{C}[\mathcal{M}] \to \mathbb{C}[\mathcal{M}]$$

$$f \mapsto T_L(f)(V \mapsto \sum_{W \subset V_C, (V|_C)/W \simeq L} f(\mathcal{A}_C(V, W))),$$

Types of C	Hecke Algebras	
\mathbb{P}^1	quantum algebra $U_q(sl_2) _{q=p^{1/2}}$	
	generated by E, F, K	
elliptic curves	quantum toroidal algebra $U_q(g_{tor}) _{q=p^{1/2}}$	
	generated by E_i, F_i, K_i	

Ginzburg-Kapranov) Langlands conjecture for surfaces.

1. For any pair (S, C), there is a natural algebraic homomorphism

```
\mathbb{C}[\operatorname{LocSys}_{C}] \to \operatorname{End}\mathbb{C}[\mathcal{M}^{\circ}], \quad f \mapsto T_{f}.
```

2. To any local system ϕ on *S*, one can associate an automotphic function $F_{\phi} \in \mathbb{C}[\mathcal{M}^{\circ}]$ such that

$$T_f(F_{\phi}) = f(\phi|_C) \cdot F_{\phi}, \forall f \in \mathbb{C}[\operatorname{LocSys}_C].$$

- Global Langlands conjecture for surfaces.
 - 1. Let \mathfrak{B} be the moduli space of "Global Buildings", which is just $\mathbb{T}_G/\mathbb{K}_G$. Then there is a map

$$\mathbb{C}[\operatorname{LocSys}_{\mathcal{S}}] \to \operatorname{End}\mathbb{C}[\mathfrak{B}],$$

which is compatible with Ginzburg-Kapranov's conjecture for the map $\mathcal{M}^\circ \to \mathcal{M} \to \mathfrak{B}.$

Thanks for Listening!