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Reflection Groups
Let V be finite-dimensional real vector space with an inner product,H is a
hyperplane in V .
The reflectionwith respect toH is the linear transformation sH : V → V which is
identity onH and is multiplication by−1 on the orthogonal complementH⊥ of
H .
If α is a nonzero vector inH⊥, so thatH = α⊥, we will write sα instead of sH .

sα(x) = sα(h + λα) = h − λα = x − 2λα = x − 2
〈α, x〉
〈α, α〉

α.

A finite reflection group is a finite groupW of invertible linear transformations of
V generated by reflections sH , whereH ranges over a set of hyperplanes.
Finite reflection groups have been completely classified up to isomorphism:
1. Type An(n ≥ 1);
2. Type Cn(n ≥ 2) (This corresponds to root systems of type Bn and type Cn);
3. TypeDn(n ≥ 4) ;
4. Type E6,E7,E8;
5. Type F4;
6. Type G2;
7. TypeH3,H4 (This doesn’t correspond to any root system).



Chamber Complexes of Finite Reflection Groups

LetH = {Hi}i∈I be a family of hyperplanes in V . For each i ∈ I , suppose that
fi : V → R is a nonzero linear function such thatHi is defined by fi = 0.
A cell in V with respect to the familyH is a nonempty set A obtained by choosing
for each i ∈ I , a sign σi ∈ {−,+, 0}, such that

A = ∩
i∈I
Ui,

1. Ui = Hi = {x ∈ V |fi(x) = 0}, if σi = 0,
2. Ui = {x ∈ V |fi(x) > 0}, if σi = +,
3. Ui = {x ∈ V |fi(x) < 0}, if σi = −.

The cells such that σi 6= 0 are called chambers. We letΣ(H) denote the set of all
cells and let C(H) be the subset of all chambers.



Let C be a fixed chamber, called the fundamental chamber, and let S be the set of
reflections with respect to walls of C .

The set S generatesW .
The action ofW is simply transitive on the set C of chambers. Thus there is a 1− 1
correspondence betweenW and C defined byw ↔ wC .

Suppose that G is a group and S is a set of generators of G such that S = S−1 and e /∈ S.
Then the Cayley graph of (G, S) is the graph whose vertex set is G and whose edges
are the pairs (g ,h) such that h = gs for some s ∈ S.

The chamber graph ofΣ(W , S) is isomorphic to the Cayley graph of (W , S).



Coxeter Groups

A Coxeter group is a groupWwhich has a generator set S = {r1, r2, · · · } such that
W can be defined by

〈r1, r2, · · · |(rirj)mij = 1〉.

wheremii = 1 andmij = mji ≤ ∞, if i 6= j. The pair (W , S)whereW is a Coxeter
group with generators S = {r1, · · · , · · · } is called a Coxeter system.
For a Coxeter system (W , S), a standard coset inW is a coset of the formwWJ
withw ∈ W andWJ := 〈J〉 for some subset J ⊂ S.
LetΣ(W , S) be the poset of standard cosets inW , ordered by reverse inclusion.
Thus B ≤ A inΣ if and only if B ⊇ A as subsets ofW , in which case we say that B
is a face of A. We callΣ(W , S) the Coxeter complex associated to (W , S).
A simplicial complexΣ is called a Coxeter complex if it is isomorphic toΣ(W , S)
for some Coxeter system (W , S).



Buildings

Definition

A building is a simplicial complex∆ that can be expressed as the union of sub-
complexesΣ (called apartments) satisfying the following axioms:
1. Each apartmentΣ is a Coxter complex.
2. For any two simplicies A,B ∈ ∆, there is an apartment containing both of
them.

3. IfΣ andΣ′ are two apartments containing A and B, then there is an
isomorphismΣ → Σ′ fixing A and B pointwise.



Buildings as Chamber Complexes

Let∆ be a finite dimensional simplicial complex. A gallery is a sequence of
maximal simplicies in which any two consecutive one are adjacent, i.e., distinct
and have a common codimension 1 face.
We say that∆ is a chamber complex if all maximal simplicies have the same
dimension and any two can be connected by a gallery.
A chamber in a chamber complex is a maximal simplex. A codimension 1 face of
a chamber will be called a panel.
A chamber complex is said to be thin if each panel is a face of exactly two
chambers.
A chamber complex is said to be thick if each panel is a face of at least 3
chambers.
For a chamber complex∆, we let C(∆) denote the set of its chambers. Then there
is well-defined distance function δ(−,−) on C(∆), which is defined to be the
minimal length of the galleries which joined these two chambers.



Buildings asW-Metric Spaces

A building of type (W , S) is as pair (C, δ) consisting of a nonempty set C, whose
elements are called chambers, together with a map δ : C × C → W , called the
Weyl distance function, which satisfies the following conditions for all C ,D ∈ C:
1. δ(C ,D) = 1 if and only if C = D.
2. If δ(C ,D) = w and C ′ ∈ C satisfies δ(C ′,C) = s ∈ S, then δ(C ′,D) = sw orw. If in
addition l(sw) = l(w) + 1, then δ(C ′,D) = sw.

3. If δ(C ,D) = w, then for any s ∈ S, there exists a chamber C ′ ∈ C such that
δ′(C ′,C) = s and δ(C ′,D) = sw.

The axioms here is very similar to the axioms of metric spaces. We therefore
sometimes call (C , δ) aW -metric space.



Metric Realizations of Buildings

Let Z be a metric space with a family of nonempty subsets Zs, s ∈ S. We can think
Z as the model for a closed chamber, and Zs be its s-panel.
We define a equivalence relation on C(∆)× Z by setting (C , z) ' (D, z) if
δ(C ,D) = s and z ∈ Zs . This is equivalent to say (C , z) ∼ (C ′, z′) if and only if
z = z′ and there is a gallery C = C0, · · · ,Cl = C ′ such that δ(Ci−1,Ci) = si ∈ S
and z ∈ Zsi for i = 1, · · · , l.
For a building∆, we define the Z -realization of∆, denoted as X = X (Z ,∆) to be
the quotient of C(∆)× Z by the equivalence relation defined above.
There is a metric on X such that {C} × Z is isometric to Z .



Group Actions on Buildings
We say an action of G on∆ is strongly transitive if G acts transitively on the sets
of pairs (Σ,C) consisting of an apartmentΣ ∈ ∆ and a chamber C ∈ Σ.
Assume that the G-action on∆ is strongly transitive, and we choose a pair (Σ,C).
We will often refer to C as the fundamental chamber and toΣ as the fundamental
apartment.
We now define the three subgroups of G:

B := {g ∈ G|gC = C},
N := {g ∈ G|gΣ = Σ},
T := {g ∈ G|g fixesΣ pointwise}.

We fined that T is a normal subgroup ofN , being the kernel of the
homomorphism f : N → W induced by the action ofN onΣ. We haveW ∼= N/T
since f is surjective.
We say an action of G on a building∆ isWeyl transitive if for eachw ∈ W , the
action is transitive on the set of ordered pairs (C ,D) of chambers with
δ(C ,D) = w.



TheBruhat Decomposition

Suppose that the action ofG on∆ is Weyl transitive, and let B be the stabilizer of a
chamber C . Then there is a bijection on B \ G/B → W given by BgB 7→ δ(C , gC).
Let G be group, B ⊂ G a subgroup, (W , S) a Coxeter system, and
C : W → B \ G/B be map of set. They satisfying the following axioms:
1. C(w) = B if and only ifw = 1.
2. C : W → B \ G/B is surjective, i.e., G =

⋃
w∈W

C(w).

3. For any s ∈ S andw ∈ W ,

C(sw) ⊂ C(s)C(w) ⊂ C(sw) ∪ C(w).

Standard parabolic subgroups: PJ :=
⋃

w∈WJ

C(w),WJ = 〈J〉 , J ⊂ S.

Given a Bruhat decomposition of (G,B), we denote by∆(G,B) the poset of the
standard parabolic subgroups, ordered by the reverse inclusion.
∆ = ∆(G,B) is a building, and the natural action of G on∆ by left multiplication
is Weyl transitive.



BN-Pairs

Let B andN be two subgroups of a group G, we say B andN is a BN-pair if B andN
generate G, the intersection T := B ∩ N is normal inN , and the quotientW := N/T
admits a set of generators S such that the following two conditions hold:

For s ∈ S andw ∈ W ,sBw ⊆ BswB ∪ BwB.
For s ∈ S,sBs−1 � B.

The groupWwill be called the Weyl group associated to the BN-pair. We also say that
the quadruple (G,B,N , S) is a Tits system.

Suppose that we have BN -pair in G, then the generating set S is uniquely
determined, and (W , S) is a Coxeter system. There is a thick building
∆ = ∆(G,B) that admits a strongly transitive G-action, such that B is a stabilizer
of a fundamental chamber andN stabilizers a fundamental apartment and is
transitive on its chambers.



Applications



Buildings Associated to Vector Spaces
Let V be a vector space of dimension n ≥ 2 over an arbitrary field.
We let∆ = ∆(V ) be the flags of V , which are chains

V1 ⊂ V2 ⊂ · · · ⊂ Vk

of nonzero proper subspaces of V .
The maximal simplices of∆ are the chains

V1 ⊂ V2 ⊂ · · · ⊂ Vn−1

with dimVi = i.
An apartment when n = 3



Building of Semisimple Algebraic Groups

Suppose that G is a semisimple algebraic group over an arbitrary field k. We construct
a building∆(G) by the Tits system (G,B,N , S) related to G.

If k is algebraically closed. We take B to be a Borel subgroup of G, T a maximal
torus T contained in B, and letN = NG(T ).
1. The vertices of∆(G) are maximal proper parabolic subgroups of G.
2. Vertices P1, · · · ,Pm forms the vertices of a simplex σ if and only if the intersection
P1 ∩ · · · ∩ Pm is also a parabolic subgroup, which corresponds to the simplex σ.

3. The chambers of∆(G) correspond to the Borel subgroups of G.
4. The apartments of∆(G) correspond to the maximal tori of G.

If k is not algebraically closed. We take B to be a minimal parabolic subgroup of
G, T a maximal split torus contained in B, and letN = NG(T ).
1. The vertices of∆(G) are maximal proper parabolic subgroups of G.
2. Vertices P1, · · · ,Pm forms the vertices of a simplex σ if and only if the intersection
P1 ∩ · · · ∩ Pm is also a parabolic subgroup, which corresponds to the simplex σ.

3. The chambers of∆(G) correspond to the minimal parabolic subgroups of G.
4. The apartments of∆(G) correspond to the maximal split tori of G.



Buildings of Reductive Groups over Local Fields
G be a connected reductive group over a nonarchimedean locally compact field
F . The apartments of∆(G) are

A = (X∗(S)/X∗(C))⊗ R
frommaximal split tori of G.
We define a equivalence relation∼ on the set G × A by (g , x) ∼ (h, y) if there
exists an n ∈ NG(S) such that nx = y and g−1hn ∈ Ux . The set of equivalence
classes is defined by

X := G × A/ ∼ .

We call X the Bruhat-Tits building of G.
The Bruhat-Tits Building of SL2(Q5)



Representations of p-Adic Reductive Groups
Suppose that K is a compact open subgroup of G. The Hecke-algebraH(G,K ) is
the algebra of complex-valued functions f on G satisfying the following
conditions:
1. f (kgk′) = f (g) for any g ∈ G and k, k′ ∈ K ;
2. f is zero outside of a union of a finite number of KgK .

The Hecke-algebra of G is defined to be

H(G) = ∪KH(G,K ),

where K runs through a neighbourhood basis of 1which consists of compact
open subgroups of G.
There is a bijection between the set of isomorphism classes of irreducible smooth
representations of G and the set of isomorphism classes of non-degenerate
simpleH(G)-module.
In general, for a compact open subgroup I ofG, we have the following adjunction:

(·)I : Rep∞
R (G) ⇆ ModH : IndGI (R)⊗H (·).

When R = C and I is the pro-p Iwahori subgroup, then the above functors give an
equivalence between the categoryModH and the full subcategoryRepIG of
Rep∞

R (G).



Suppose thatX is a building. A coefficient system on a buildingX is a family
(FF , (rFF ′)F ′⊂F̄ ) indexed by the faces ofX , whereFF ∈ ModR and for any faces F
and F ′ such that F ′ ⊂ F̄ , there is a R-module map rFF ′ : FF → FF ′ . These
morphisms must satisfying the following two properties:

f FF = IdFF and rFF ′′ = rF
′

F ′′ ◦ rFF ′ ,

for any faces F ′′ ⊆ F ′ ⊆ F ofX .
An objectF ∈ Coeff(X ) is called G-equivariant if it comes with a family of
coefficient systems {cg : F → g∗F}g∈G such that
1. c1 = IdF ,
2. cghh∗cg ◦ ch, ∀g ,h ∈ G.

For a coefficient systemF , we define a G-equivariant sheaf S(F) as follows: For
any open subsetΩ ⊆ X , we define

S(F)(Ω) := {s : Ω →
∐
z∈Ω

F∗
Fz satisfying}

1. ∀z ∈ Ω, s(z) ∈ F∗
Fz ,

2. ∀z ∈ Ω, ∃V ⊂ ΩStar(Fz) open neighborhood of z such that
∀z′ ∈ V , s(z′) = (rFz′Fz )

∗(s(z)).



We define a functor

F : ModH → CoeffG(X )

M 7→ F(M),

whereF(M)F = Im(X IF ⊗H M
τM,F−→ HomH (HomH (X IF ,H),M)).

The functor
S ◦ F(.) : ModH → ShvG(X )

is fully faithful. The essential image of the functor S : CoefffgG (X ) → ShvG(X ) is
the full subcategory of constructible G-equivariant sheaves onX
(Schneider-Stuhler, Kohlhaase).



Buildings in Higher Number
Theory



Higher Dimensional Local Fields

Definition

A 0-dimensional local field is a finite field.
For n ≥ 1, a n-dimensional local field is a complete discrete valuation field
whose residue field is a (n − 1)-dimensional local field.

One-dimensional local fields
1. R,C;
2. Fq((t));
3. Finite extension ofQp.

Two-dimensional local fields
1. Fq((t1))((t2));
2. E((t)) over a local nonarchimedean field E ;
3. E((t)) over a local archimedean field E ;
4. Finite extensions ofQp{{t}}.



Classification of n-Dimensional Local fields

Let F be a n-dimensional local field.
1. If charF 6= 0 then

F ∼= F (n)((t1)) · · · ((tn)),

where F (n) is a finite field.
2. If charF (n−1) = 0 then

F ∼= F (n−1)((t1)) · · · ((tn−1)),

where F (n−1) is a one-dimensional local field of characteristic 0.
3. In the remaining case, Let 2 ≤ r ≤ n be the unique integer such that

charF (n−r) = 0 6= charF (n+1−r). Then F is isomorphic to a finite extension of

Q{{t1}} · · · {{tr−1}}((tr+1)) · · · ((tn))

whereQq is the unramified extension ofQp with residue field of F (n).



Rings of Integral Elements in Higher Local Fields
If n = 0, we defineO0

F = F .
If n ≥ 0, we defineOn

F := {x ∈ OF : x ∈ O(n−1)

F },whereO(n−1)

F is the rank n − 1

ring of integers of F , a field of discrete valuation of dimension≥ n − 1.

F ⊃ OF = O(1)
F ⊃ O(2)

F ⊃ · · · ⊃ O(n)
F .

Suppose that F is a complete valuation field, and t ∈ F is uniformizer, then we
have

F = OF [t−1], F× ∼= O×
F × tZ,

where tZ denote the infinite cyclic group of F× generated by t .
A sequence of n-local parameters t1, · · · , tn ∈ F is a sequence of elements
satisfying:
1. tn is a uniformizer of F .
2. The reduction t1, · · · , tn−1 of t1, · · · , tn−1 form a sequence of local parameter for the
filed F̄ of dimension n − 1.

Suppose that F is a n-dimensional, then we have

F = O(n)
F [t−1

1 , · · · , t−1
n ], and F× ∼= (On

F )
× × tZ1 × · · · × tZn .



Higher Adelic Spaces

Let B = SpecOK for a number filed K and let ϕ : X → B be a B-scheme satisfying the
following conditions:

X is integral, regular and dimension 2.
ϕ is proper and flat.
The generic fibre XK is a geometrically integral, smooth, projective curve over K.
Fix a closed point x ∈ X , and a curve y ⊂ X , such that x ∈ y ⊂ X .
1. py,x = ker(OX ,x → Oy,x).
2. ϕ : SpecÔX ,x → SpecOX ,x .
3. For any q ∈ SpecÔX ,x , such that q ∩ OX ,x = py,x , we call this q a local branches of y
at x, denote all this q as y(x).

Kx,q := Frac((̂Ox)q) is a two dimensional local field.



Kx,y :=
∏

q∈y(x)

Kx,q, Ox,y :=
∏

q∈y(x)

Ox,q

Ex,y :=
∏

q∈y(x)

Ex,q, where Ex,q is the residue field of Kx,q.

kx,y :=
∏

q∈y(x)

kx,q, where kx,q is the residue field of Ex,q.

We define a ringAy as the restricted product of the rings Kx,y for y fixed and x ∈ y,

Ay =

′∏
x∈y

Kx,y .

We define the two-dimensional adele,

AX =

′′∏
x∈y,y⊂X

Kx,y .



Automorphic Forms on Two-dimensional Adelic Spaces

For a reductive group G, let

TG = G(A)× G(A)/V (G(A)× G(A)).

Let KG be the image of the map

G(B)× G(K ) → G(A)× G(A)/G(OA) → TG

Irreducible representations of G × G in the space of continuousC((X ))-valued
functions on TG/KG , satisfying some restrictions, could be viewed as a candidate for
unramified automorphic functions associated to G.



Buildings associated with Higher Local Fields (Parshin)
Let K be a n-dimensional local field, and letO′ = O(n)

K . Suppose that V is a vector
space of dimension l + 1 over K . We will define the building of the group PGL(V ).

∆(G,K / · · · /k) =
⋃

0≤m≤n
∆•[m]

where for n = 0,

∆0[0] = {nonzero proper subspaces L ⊂ V },
and for n > 0

∆0[m] =
⋃

Conditions

{〈L〉|L ∼= Oi1 ⊕ · · · ⊕ Oil+1
asO′-modules}.

Here 〈L〉 is a class ofO′-module L up to aL, a ∈ K ∗, and the conditions means that the
union is over all

0 ≤ il+1 ≤ · · · ,≤ i1 = n for all 1 ≤ k ≤ l + 1, ik = either n or m.

For i > 0, we define

∆i[m] =

{
(〈L0〉, · · · , 〈Li+1〉)|〈L0〉, · · · , 〈Li+1〉 ∈ ∆0[m].

and belongs to a maximal chain ofO′-submodules.

}



A set {Lα}α∈I ofO′-modules in V is called a chain if
1. for every α ∈ I and every a ∈ K ∗, there exits α such that aLα = Lα′ ,
2. the set {Lα}α∈I is totally ordered by the inclusion.

The vertices of PGL(2) over a 2-dimensional local field K .

∆0[2] 22 〈O ⊕ O〉

∆0[1] 21 〈O ⊕O〉

∆0[0] 20 〈O ⊕ K 〉

The vertices of PGL(3) over a 2-dimensional local field K .



Suppose that S is a smooth projective algebraic surface over Fq . We fix a point
P ∈ S and an irreducible curve C such that P ∈ C .
(Parshin) LetM◦ ⊂ M = BunG be the moduli space ofOS-module F , such that
F is trivial rank 2 on X \ C . LetM◦◦ ⊂ M◦ be the subspace corresponds to those
which are locally trivial outside P. Then we have a map

Ψ : M◦◦ → ∆0(S,C ,P)[2].

Let V ∈ M andW ⊂ VC ,AC(V ,W ) denote the subsheaf of V consisting of
sections whose value at C is contained in W. To any vector bundle L on C , we
define the Hecke operators :

TL : C[M] → C[M]

f 7→ TL(f )(V 7→
∑

W⊂VC ,(V |C )/W≃L

f (AC(V ,W ))),

Types of C Hecke Algebras
P1 quantum algebraUq(sl2)|q=p1/2

generated by E , F ,K
elliptic curves quantum toroidal algebraUq(gtor)|q=p1/2

generated by Ei, Fi,Ki



(Ginzburg-Kapranov) Langlands conjecture for surfaces.
1. For any pair (S,C), there is a natural algebraic homomorphism

C[LocSysC ] → EndC[M◦], f 7→ Tf .

2. To any local system ϕ on S, one can associate an automotphic function Fϕ ∈ C[M◦]
such that

Tf (Fϕ) = f (ϕ|C) · Fϕ, ∀f ∈ C[LocSysC ].

Global Langlands conjecture for surfaces.
1. LetB be the moduli space of "Global Buildings", which is just TG/KG . Then there is
a map

C[LocSysS] → EndC[B],

which is compatible with Ginzburg-Kapranov’s conjecture for the map
M◦ → M → B.



Thanks for Listening !
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