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Reflection Groups

&= Let V be finite-dimensional real vector space with an inner product, H is a
hyperplane in V.

&1 The reflection with respect to H is the linear transformation sy : V — V which is
identity on H and is multiplication by —1 on the orthogonal complement H of
H.

ma If « is a nonzero vector in H+, so that H = o+

, we will write s, instead of sg.

(@, x)

o = Sa = _ e —2 e —2
Sa(x) =sa(h+Xa)=h—da=x—-2 a=x a.a)

&= A finite reflection group is a finite group W of invertible linear transformations of
V generated by reflections sy, where H ranges over a set of hyperplanes.
&= Finite reflection groups have been completely classified up to isomorphism:
1. Type Ap(n > 1);
. Type C,(n > 2) (This corresponds to root systems of type B, and type C,);
.Type D,(n > 4);
. Type Es, E7, Es;
. Type Fy;
- Type Gy;
. Type Hs, Hy (This doesn't correspond to any root system).
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Chamber Complexes of Finite Reflection Groups

ma Let H = {H,}ics be a family of hyperplanes in V. For each i € I, suppose that
fi : V. — Ris anonzero linear function such that H; is defined by f; = 0.

&3 A cell in V with respect to the family H is a nonempty set A obtained by choosing
foreach i € I,asigno; € {—,+,0}, such that

A= NU,
icl

1.U;=H; = {x S V|f,(x) = 0}, ifo; =0,
2. Uy ={x e V|fi(x) > 0},ifo; = +,
3.U; = {x S V\f,(x) < 0},if0'i = —.
ma The cells such that o; # 0 are called chambers. We let ¥:(#) denote the set of all
cells and let C(#) be the subset of all chambers.



Let C be a fixed chamber, called the fundamental chamber, and let S be the set of
reflections with respect to walls of C.
g3 The set S generates W.
8 The action of W is simply transitive on the set C of chambers. Thus thereisal — 1
correspondence between W and C defined by w <> wC.

Suppose that G is a group and S is a set of generators of Gsuch that S = S~!'and e ¢ S.
Then the Cayley graph of (G, S) is the graph whose vertex set is G and whose edges
are the pairs (g, 1) such that h = gs for some s € S.

& The chamber graph of (W, S) is isomorphic to the Cayley graph of (W, S).



Coxeter Groups

=a A Coxeter group is a group W which has a generator set S = {ry, 12, - - - } such that

W can be defined by

(ro, o, - [(rim) ™ = 1).
where m; = 1 and m;; = m;; < oo, if i # j. The pair (W, S) where W is a Coxeter
group with generators S = {ry,--- ,--- } is called a Coxeter system.

Ea For a Coxeter system (W, S), a standard coset in W is a coset of the form wW;
with w € W and W, := (J) for some subset J C S.

ma Let (W, S) be the poset of standard cosets in W, ordered by reverse inclusion.
Thus B < Ain ¥ ifand only if B O A as subsets of W, in which case we say that B
is a face of A. We call X(W, S) the Coxeter complex associated to (W, S).

Ea A simplicial complex ¥ is called a Coxeter complex if it is isomorphic to X (W, S)
for some Coxeter system (W, S).



Buildings

Definition
A building is a simplicial complex A that can be expressed as the union of sub
complexes ¥ (called apartments) satisfying the following axioms:
1. Each apartment ¥ is a Coxter complex.

2. For any two simplicies A, B € A, there is an apartment containing both of
them.

3. If ¥ and ¥/ are two apartments containing A and B, then there is an
E isomorphism ¥ — ¥ fixing A and B pointwise.

&




Buildings as Chamber Complexes

g8 Let A be a finite dimensional simplicial complex. A gallery is a sequence of
maximal simplicies in which any two consecutive one are adjacent, i.e., distinct
and have a common codimension 1 face.

=3 We say that A is a chamber complex if all maximal simplicies have the same
dimension and any two can be connected by a gallery.

&= A chamber in a chamber complex is a maximal simplex. A codimension 1 face of
a chamber will be called a panel.

= A chamber complex is said to be thin if each panel is a face of exactly two
chambers.

&8 A chamber complex is said to be thick if each panel is a face of at least 3
chambers.

&a For a chamber complex A, we let C(A) denote the set of its chambers. Then there
is well-defined distance function 6(—, —) on C(A), which is defined to be the
minimal length of the galleries which joined these two chambers.



Buildings as W-Metric Spaces

ma A building of type (W, S) is as pair (C, d) consisting of a nonempty set C, whose
elements are called chambers, together with amap § : C x C — W, called the
Weyl distance function, which satisfies the following conditions for all C, D € C:
1.6(C,D) = lifand onlyif C = D.
2.1f§(C,D) = wand C’ € C satisfies 6(C’, C) = s € S, then §(C’, D) = swor w. Ifin
addition I(sw) = I(w) + 1, then §(C’, D) = sw.
3.If6(C, D) = w, then for any s € S, there exists a chamber C’ € C such that
§'(C',C) =sand §(C’", D) = sw.
53 The axioms here is very similar to the axioms of metric spaces. We therefore
sometimes call (C, ) a W-metric space.



Metric Realizations of Buildings

58 Let Z be a metric space with a family of nonempty subsets Z;, s € S. We can think
Z as the model for a closed chamber, and Z; be its s-panel.

ma We define a equivalence relation on C(A) x Z by setting (C, z) ~ (D, z) if
d(C, D) = sand z € Z;. This is equivalent to say (C, z) ~ (C’, ') if and only if
z =7 and thereis agallery C = Cy,--- ,C; = C' such that §(C;—1,C;) =s; € S
andzec Zgfori=1,---,1L

& For a building A, we define the Z-realization of A, denoted as X = X(Z, A) to be
the quotient of C(A) x Z by the equivalence relation defined above.

ma There is a metric on X such that {C} x Z is isometric to Z.



Group Actions on Buildings

g3 We say an action of G on A is strongly transitive if G acts transitively on the sets
of pairs (X, C) consisting of an apartment ¥ € A and a chamber C € X.

ma Assume that the G-action on A is strongly transitive, and we choose a pair (%, C).
We will often refer to C as the fundamental chamber and to ¥ as the fundamental
apartment.

&8 We now define the three subgroups of G:

B {g € GlgC = CJ,
N :={g € G|gx =X},
T := {g € G|g fixes ¥ pointwise}.

We fined that T is a normal subgroup of N, being the kernel of the
homomorphism f : N — W induced by the action of N on ¥. We have W =< N/T
since f is surjective.

&8 We say an action of G on a building A is Weyl transitive if for each w € W, the

action is transitive on the set of ordered pairs (C, D) of chambers with
4(C,D) = w.



The Bruhat Decomposition

g8 Suppose that the action of G on A is Weyl transitive, and let B be the stabilizer of a
chamber C. Then there is a bijection on B\ G/B — W given by BgB — §(C, gC).
ma Let G be group, B C G a subgroup, (W, S) a Coxeter system, and
C: W — B\ G/Bbe map of set. They satisfying the following axioms:
1. C(w) = Bifand only if w = 1.

2.C: W — B\ G/Bissurjective,ie, G= |J C(w).
wew
3.Foranys € Sand w € W,

C(sw) C C(s)C(w) C C(sw)U C(w).
ma Standard parabolic subgroups: P; := |J C(w), W; = (J),J C S.
wewy
ma Given a Bruhat decomposition of (G, B), we denote by A(G, B) the poset of the
standard parabolic subgroups, ordered by the reverse inclusion.

ma A = A(G, B) is a building, and the natural action of G on A by left multiplication
is Weyl transitive.



BN-Pairs

Let Band N be two subgroups of a group G, we say Band N is a BN-pair if Band N
generate G, the intersection T := BN N is normal in N, and the quotient W := N/T
admits a set of generators S such that the following two conditions hold:
&8 Fors € Sand w € W,sBw C BswB U BwB.
ma Fors € S,sBs~! £ B.
The group W will be called the Weyl group associated to the BN-pair. We also say that
the quadruple (G, B, N, S) is a Tits system.
EE Suppose that we have BN-pair in G, then the generating set S is uniquely
determined, and (W, S) is a Coxeter system. There is a thick building
A = A(G, B) that admits a strongly transitive G-action, such that B is a stabilizer

of a fundamental chamber and N stabilizers a fundamental apartment and is
transitive on its chambers.



Applications



Buildings Associated to Vector Spaces
&= Let V be a vector space of dimension n > 2 over an arbitrary field.
ma Welet A = A(V) be the flags of V, which are chains

wcWwcCc---CVg

of nonzero proper subspaces of V.
&= The maximal simplices of A are the chains

VicVaC---C Vg
with dimV; = i.
58 An apartment when n = 3
Ly
Ly +L2/ \Ll+L3

o
N

Lo+ Ls



Building of Semisimple Algebraic Groups

Suppose that G is a semisimple algebraic group over an arbitrary field k. We construct
a building A(G) by the Tits system (G, B, N, S) related to G.
& If k is algebraically closed. We take B to be a Borel subgroup of G, T a maximal
torus 7T contained in B, and let N = Ng(T).

1. The vertices of A(G) are maximal proper parabolic subgroups of G.

2. Vertices Py, - - - , P, forms the vertices of a simplex ¢ if and only if the intersection
Py N---N P, is also a parabolic subgroup, which corresponds to the simplex o.

3. The chambers of A(G) correspond to the Borel subgroups of G.

4. The apartments of A(G) correspond to the maximal tori of G.

& If k is not algebraically closed. We take B to be a minimal parabolic subgroup of
G, T a maximal split torus contained in B, and let N = Ng(T).
1. The vertices of A(G) are maximal proper parabolic subgroups of G.
2. Vertices Py, - - - , P, forms the vertices of a simplex ¢ if and only if the intersection
P; N ---N Py, is also a parabolic subgroup, which corresponds to the simplex o.
3. The chambers of A(G) correspond to the minimal parabolic subgroups of G.
4. The apartments of A(G) correspond to the maximal split tori of G.



Buildings of Reductive Groups over Local Fields

= G be a connected reductive group over a nonarchimedean locally compact field
F. The apartments of A(G) are

A= (X(9)/X%(C)®R

from maximal split tori of G.
ma We define a equivalence relation ~ on the set G x Aby (g, x) ~ (h,y) if there
exists an n € Ng(S) such that nx = y and g~ 'h,, € U,. The set of equivalence
classes is defined by
X:=GxA/~.
We call X the Bruhat-Tits building of G.
ma The Bruhat-Tits Building of SL2(Q5)




Representations of p-Adic Reductive Groups

8 Suppose that K is a compact open subgroup of G. The Hecke-algebra H (G, K) is
the algebra of complex-valued functions f on G satisfying the following
conditions:

1. f(kgk') = f(g) forany g € Gand k, k' € K;
2. f is zero outside of a union of a finite number of KgK.
g3 The Hecke-algebra of G is defined to be

H(G) = UxH(G, K),

where K runs through a neighbourhood basis of 1 which consists of compact
open subgroups of G.

&= There is a bijection between the set of isomorphism classes of irreducible smooth
representations of G and the set of isomorphism classes of non-degenerate
simple 7 (G)-module.

&3 In general, for a compact open subgroup I of G, we have the following adjunction:

()7 : Repy (G) = Mody : Ind¥(R) @4 (+).
When R = C and [ is the pro-p Iwahori subgroup, then the above functors give an

equivalence between the category Mod and the full subcategory Repk of
Repg’(G).



EE Suppose that X is a building. A coefficient system on a building X is a family
(Fr, (rE) prcr) indexed by the faces of X', where Fr € Modpg and for any faces F
and F’ such that F’ C F, there is a R-module map rf, : Fr — Fpr. These
morphisms must satisfying the following two properties:

/
ff=1dz and rf, =rhiorf,

for any faces F” C F' C Fof X.
& An object F € Coeff(X) is called G-equivariant if it comes with a family of
coefficient systems {cg : F — g.F }¢c¢ such that
l.cg = Id]:,
2. cghhycg o cp, Vg, h € G.
ma For a coefficient system F, we define a G-equivariant sheaf S(F) as follows: For
any open subset 2 C X, we define

S(F)(Q) == {s: Q@ — [ Fr, satisfying}

z€Q

1.Vz € Q,s(z) € Ff,
2.¥z € Q,3V C QStar(F;) open neighborhood of z such that
Vz e V,s(z') = (rgz')*(s(z)).



ma We define a functor

F:  Mody — Coeffg(X)
M — F(M),

where F(M)p = Im(X" @y M ™5 Homp (Homy (X", H), M)).
ma The functor
So F(.) : Mody — Shvg(X)

is fully faithful. The essential image of the functor S : Coeff’;g (X) — Shvg(X)is
the full subcategory of constructible G-equivariant sheaves on X’
(Schneider-Stuhler, Kohlhaase).



Buildings in Higher Number
Theory



Higher Dimensional Local Fields

Definition

mE A 0-dimensional local field is a finite field.

&= For n > 1, a n-dimensional local field is a complete discrete valuation field
whose residue field is a (n — 1)-dimensional local field.

One-dimensional local fields
1.R, G
2. (1))
3. Finite extension of Q,,.
Two-dimensional local fields
L Fq((0))((2));
2. E((t)) over alocal nonarchimedean field E;
3. E((t)) over a local archimedean field E;
4. Finite extensions of Q,{{f}}.



Classification of n-Dimensional Local fields

Let F be a n-dimensional local field.
1. If charF # 0 then
F 2 F"((n)) - (),
where F(" is a finite field.
2. 1f charF("~1) = 0 then

F=F" (1) ((ta1)),

where F("=1) is a one-dimensional local field of characteristic 0.

3. In the remaining case, Let 2 < r < n be the unique integer such that
charF("=7) = 0 2 charF("t1=7)_ Then F is isomorphic to a finite extension of

Qi{a}} - {tr—1 3 ((541)) -~ ()

where Qg is the unramified extension of Q,, with residue field of F (n),



Rings of Integral Elements in Higher Local Fields
ma If n = 0, we define O% = F.
Ifn>0,wedefine O} :={x € Op: X € (’)(Fn_l)}, where (’)(f”_l) istherankn — 1
ring of integers of F, a field of discrete valuation of dimension > n — 1.

Foop=0Y>50%5...50W.

= Suppose that F is a complete valuation field, and ¢ € F is uniformizer, then we
have
F=0p[t™], F*=0} 1t

where tZ denote the infinite cyclic group of F* generated by .

= A sequence of n-local parameters #1, - - - , f;;, € F is a sequence of elements
satisfying:
1. ¢, is a uniformizer of F.
2. Thereduction #y,--- , t,—1 of 1, - - - , t,—1 form a sequence of local parameter for the

filed F of dimension n — 1.

&= Suppose that F is a n-dimensional, then we have

F=0"[" 67, and F* = (O)* x t& x -+ x {2,

n



Higher Adelic Spaces

Let B = SpecOk for anumber filed Kand let ¢ : X — B be a B-scheme satisfying the
following conditions:

g4 X is integral, regular and dimension 2.
EE ¢ is proper and flat.

&= The generic fibre Xk is a geometrically integral, smooth, projective curve over K.
Fix a closed point x € X, and acurve y C X, suchthatx € y C X.
L. pyx = ker(Oxx = Oy x).
2.¢: Specé)zx — SpecOx .
3.Foranyq € Spec@:x, such that g N Ox,x = py,x, we call this g a local branches of y
at x, denote all this g as y(x).

B8 Ky, = Frac(@) is a two dimensional local field.



Ky = H Kig, Oxy: H Ovrq

qey(x) qey(x)

Eyy = H Ey 4, where E, 4 is the residue field of K, ;.
acy(x)
key =[] keq> where kg is the residue field of E; 4.

qey(x)

ma We define a ring A, as the restricted product of the rings K, ,, for y fixed and x € y,

!
Ay = H Ky

xey

3 We define the two-dimensional adele,

I X

x€y,yCX



Automorphic Forms on Two-dimensional Adelic Spaces

For a reductive group G, let
Tg = G(A) x G(A)/V(G(A) x G(A)).
Let K be the image of the map
G(B) x G(K) — G(A) x G(A)/G(0A) — T

Irreducible representations of G x G in the space of continuous C((X))-valued
functions on T¢/Kg, satisfying some restrictions, could be viewed as a candidate for
unramified automorphic functions associated to G.



Buildings associated with Higher Local Fields (Parshin)

Let K be a n-dimensional local field, and let O’ = (’)1(,("). Suppose that V is a vector
space of dimension / + 1 over K. We will define the building of the group PGL(V).

AGK/--- k)= | Adm]
0<m<n
where for n = 0,
Ay[0] = {nonzero proper subspaces L C V},
and forn > 0
No[m] = U {(DIL=O0; &--- & Oy, as O'-modules}.
Conditions

Here (L) is a class of O’-module L up to aL, a € K*, and the conditions means that the
union is over all

0<i1 <---,<ij=nforalll < k< 1+ 1,i = eithernorm.

For i > 0, we define

A,[m] — { (<L0>7 T 7<Li+1>)’<['0>7 T 7<Li+1> S Ao[m] }

and belongs to a maximal chain of ’-submodules.



Ea A set {L, }aer of O'-modules in V is called a chain if

1. for every a € I and every a € K*, there exits « such that al, = L/,
2. the set { L, } o7 is totally ordered by the inclusion.

&8 The vertices of PGL(2) over a 2-dimensional local field K.
Ap[2] 22 (0@ O)
Aoll] 21 (08 O)
Ap[0] 20 (O@®K)

ma The vertices of PGL(3) over a 2-dimensional local field K.
A2l 222 (08 0®0)

A[l] 221 (O®O0®0)
211 (O 08 0)
Ao[0] 220

(O®O0®K)
200 (O®K®K)



B Suppose that S is a smooth projective algebraic surface over ;. We fix a point
P € Sand an irreducible curve C such that P € C.

&3 (Parshin) Let M° C M = Bung be the moduli space of Og-module F, such that
F is trivial rank 2 on X \ C. Let M°° C M° be the subspace corresponds to those
which are locally trivial outside P. Then we have a map

U M =5 Ag(S, C, P)[2].

8 Let Ve Mand W C Vg, Ac(V, W) denote the subsheaf of V consisting of
sections whose value at C is contained in W. To any vector bundle L on C, we
define the Hecke operators :

T C[M]—)C[M]
= T (V- Y flAc(v, w))),

WCVC,(V|C)/W2L

Types of C Hecke Algebras

P! quantum algebra Uy (sk)| /2
generated by E, F, K
elliptic curves | quantum toroidal algebra Uy (gor)
generated by E;, F;, K;

‘q:pw




a8 (Ginzburg-Kapranov) Langlands conjecture for surfaces.
1. For any pair (S, C), there is a natural algebraic homomorphism

C[LocSys¢] = EndC[M°], f+— T;.

2. To any local system ¢ on S, one can associate an automotphic function F, € C[M°]
such that

Ty(Fy) = f(dlc) - Fy, Vf € C[LocSysc].

&3 Global Langlands conjecture for surfaces.

1. Let B be the moduli space of "Global Buildings", which is just T¢/Kg. Then there is
amap
C[LocSysg] — EndC[B],

which is compatible with Ginzburg-Kapranov’s conjecture for the map
M = M — B,



Thanks for Listening !
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