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Abstract

We study the representability of relative Cartier divisor in the context of spec-
tral algebraic geometry. Base on this, we define the derived level structures in
spectral algebraic geometry. We prove the relative representability of derived level
structures. Combining derived level structures and derived deformations developed
by Lurie, we construct the non-even periodic higher categorical lifts of Lubin-Tate
towers.
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1 Introduction
The stable homotopy category is a central topic in algebraic topology. Structured ring

spectra are the most common examples studied, such as H∞ spectra and E∞ spectra. In
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[Lur09b] and [Lur18b], Lurie uses spectral algebraic methods give a proof of the Goerss-
Hopkins-Miller theorem for topological modular forms. Except for the application of
elliptic cohomology, Lurie also proved the E∞ structures of Morava E-theories [Lur18b],
which use the spectral version of deformation theory of certain p-divisible groups. The
earliest proof of E∞ structures of Morava E-theories is due to Goerss, Hopkins and Miller
[GH04]. They turned the problem into a moduli problem and developed an obstruction
theory. One can finish the proof by computing the Andre-Quillen groups. Comparing with
their method, Lurie’s proof is more conceptual. There are more and more applications of
spectral algebraic geometry in algebraic topology. Such as topological automorphic forms
[BL10], Morava E-theories over any Fp-algebra [Lur18b], not only just for a perfect field
k. The construction of equivariant topological modular forms [GM20], elliptic Hochschild
homology [ST23] and more.

On the other hand, moduli problems concerning deformations of formal groups with
level structures are also representable, and moduli spaces of different levels form a Lubin-
Tate tower [RZ96, FGL08]. We know that the universal objects of deformations of formal
groups have higher algebraic analogues which are the Morava E-theories. A natural
question is what are higher categorical analogues of moduli problems of deformations
with level structures? And can we find higher categorical analogues of Lubin-Tate towers.
Although the E∞-structure of topological modular forms with level structures can be
obtained from [HL16], we still hope that there exists a derived stack of spectral elliptic
curves with level structures which provide us with a more moduli interpretation. Except
this, in the computation of unstable homotopy groups of sphere, after applying the EHP
spectral sequences and the Bousfield-Kuhn functor, we observe that some terms on the
E2-page also arise from the universal deformation of isogenies of formal groups. They
are computed by the Morava E-theories on the classifying spaces of symmetric groups
[Str97, Str98]. They can be viewed as sheaves on the Lubin-Tate tower. We hope to
provide a more conceptual perspective on this fact within the higher categorical Lubin-
Tate tower.

In this paper, we give an attempt to address this problem by studying specific moduli
problems in spectral algebraic geometry. The main ingredient of our work is the derived
version of Artin’s representability theorem established in [Lur04, TTV08]. We will use
the spectral algebraic geometry version [Lur18c] in this paper. We study relative Cartier
divisors in the context of spectral algebraic geometry. By imposing certain conditions, we
define derived level structures of certain geometric objects in spectral algebraic geometry.
Using Artin representability theorem, we prove some representable results of moduli prob-
lems that arise from our derived level structures. We give some examples of applications
involving derived level structures. We consider the moduli problem of spectral defor-
mations with derived level structures of p-divisible groups. We prove that these moduli
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problems are representable by certain formal affine spectral Deligne-Mumford stacks and
the corresponding spectra can provide us many interesting general cohomology theories.

Outline
We work on spectral algebraic geometry in this paper. In the second section, we define

derived isogenies and prove that the kernel of a derived isogeny in some cases have the
same phenomenon as in the classical case. This provides evidence that our derived versions
of level structures must induce classical level structures. For representability reasons, we
use moduli associated with sheaves to detect higher homotopy of derived versions of
level structures. We define relative Cartier divisors in the context of spectral algebraic
geometry. For a spectral Deligne-Mumford stack X over a spectral Deligne-Mumford
stack S, a relative Cartier divisor is a morphism D → S of spectral Deligne-Mumford
stacks such that D → X is a closed immersion, the ideal sheaf of D is a line bundle over
X, and the morphism D → S is flat, proper and locally almost of finite presentation. We
use Lurie’s representability theorem prove that the relative Cartier divisor is representable
in certain cases. The main part of our proof involves computing of cotangent complex.
Our first main result is:

Theorem A. (Theorem 2.17) Suppose that E is a spectral algebraic space over a
connective E∞-ring R, such that E → R is flat, proper, locally almost of finite presenta-
tion, geometrically reduced, and geometrically connected. Then the functor

CDivE/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic space which is locally almost of finite presentation
over R.

In the third section, we define derived level structures of spectral elliptic curves.
Roughly speaking, for a finite abstract abelian group A, usually equals Z/NZ, Z/NZ ×
Z/NZ, a derived A-level structure of a spectral elliptic curve E over an E∞-ring R is
just a relative Cartier divisor D → E satisfying its restriction to the heart comes from
an ordinary A-level structure. We let Level(A, E/R) denote the space derived A-level
structures of a spectral elliptic curve E/R. We prove that moduli problems associated
with derived level structures are representable. Our second main result is:

Theorem B. (Theorem 3.5) Suppose that E is a spectral elliptic curve over a
connective E∞-ring R, then the functor

LevelE/R : CAlgcnR → S
R′ 7→ Level(A, ER′/R′)
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is representable by an affine spectral Deligne-Mumford stack which is locally almost of
finite presentation over the E∞-ring R.

In classical algebraic geometry, except one-dimensional group curves, we also care
level structures of p-divisible groups, it comes the full sections of commutative finite flat
group schemes. In section three, we consider derived level structures of spectral p-divisible
groups. Let Level(k,GR/R) denote the space of derived (Z/pkZ)h-level structures of a
height h spectral p-divisible group G/R. Out third main result is:

Theorem C. (Theorem 3.16) Suppose G is a spectral p-divisible group of height h

over a connective E∞-ring R. Then the functor

LevelkG/R : CAlgcnR → S; R′ → Level(k,GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPk
G/R.

In the last section, we give some applications of derived level structures. We first
prove that the moduli problem of spectral elliptic curves with derived A-level structures
is representable by a spectral Deligne-Mumford stack. Our fourth main result is:

Theorem D. (Theorem 4.7) Let Ell(A)(R) denote the space of spectral elliptic
curves with derived A-level structures over the E∞-ring R. The functor

Mell(A) : CAlgcn → S
R 7−→Mell(A)(R) = Ell(A)(R)

is representable by a spectral Deligne-Mumford stack and moreover this stack is locally
almost of finite presentation over the sphere spectrum S.

In [Lur18b], Lurie consider the spectral deformations of classical p-divisible groups.
As we have the concept of derived level structures, it is natural to consider the moduli of
spectral deformations with derived level structures of certain p-divisible groups. Suppose
G0 is a p-divisible group of height h over a perfect Fp-algebra R0. We consider the
following functor

Mor
k : CAlgadcpl → S

R→ DefLevelor(G0, R, k)

where DefLevelor(G0, R, k) is the ∞-category spanned by those quaternions (G, ρ, e, η)

1. G is a spectral p-divisible group over R.

2. ρ is a equivalence class of G0-taggings of R.

3. e is an orientation of the identity component of G.

4



4. η : D → G is a derived (Z/pkZ)h-level structure of G/R.

Our last main result is:
Theorem E. (Theorem 4.9) The functor Mor

k is corepresentable by an E∞-ring
JLk, where JLk is a finite Ror

G0
-algebra, Ror

G0
is the orientation deformation ring of G0

defined in [Lur18b].
We will give another example of spectra constructed by considering moduli of spectral

deformations with p power order subgroups level structures, which can be viewed as
topological realizations of universal objects of Strickland’s deformations of Frobenius.

Notations
1. CAlg denote the ∞-category of E∞-rings, and CAlgcn denote the ∞-category of

connective E∞-rings.

2. S denote the ∞-category of spaces (∞-groupoids).

3. For a spectral Deligne-Mumford stack X = (X ,OX ), we let τ≤nX = (X , τ≤nOX )
denote its n-truncation.

4. For a spectral Deligne-Mumford stack X = (X ,OX ), we let X♡ = (X♡, τ≤0OX )
denote its underlying ordinary Deligne-Mumford stack.

5. By a spectral Deligne-Mumford stack X over R, we mean a map of spectral Deligne-
Mumford stacks X → SpétR.

6. X be a spectral Deligne-Mumford stack over R, let S be an R-algebra. We some
times let X ×R S denote the product X ×SpétR SpétS.

7. Mell denote the spectral Deligne-Mumford stack of spectral elliptic curves, which
is defined in [Lur18a].

8. Mcl
ell denote the classical Deligne-Mumford stack of classical elliptic curves.
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advisor Yifei Zhu for his advising and helping in my entire PhD periods, especially for
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about some ideas in this paper. I thanks Jing Liu, Guozhen Wang, Jack Morgan Davies
for helpful discussions about ideas in this paper.

5



2 Relative Cartier Divisors

2.1 Isogenies of Spectral Elliptic Curves
Our main innovation is derived level structures defined in this chapter. The start

is derived version of isogenies. We prove that the kernel of a derived isogeny in some
cases have the same phenomenon as the classical case. This gives us an evidence that
over derived version of level structures must induce classical level structures. In section 2,
we define relative Cartier divisors in the setting of spectral algebraic geometry. We then
use Lurie’s representability theorem prove that functors associated with relative Cartier
divisors are representable by certain spectral Deligne-Mumford stacks. In the third and
fourth section, we study derived level structures of spectral elliptic curves and spectral
p-divisible groups. The main content of last two sections are the proof of representability
of derived level structures.

To define derived level structures, the first question is what the higher categorical
analogue of finite abelian groups are? We first recall some finiteness conditions in E∞-rings
context.

Let A be an E∞-ring, M be an A-module. We say M is

1. perfect, if it is an compact object of LModR.

2. almost perfect, if there exits a integer k such that M ∈ (LModR)≥k and M is an
almost perfect object of (LModR)≥k.

3. perfect to order n if for every filtered diagram {Nα} in (LModA)≤0, the canonical
map lim

→α
ExtiA(M,Nα) → ExtiA(M, lim

→α
Nα) is injective for i = n and bijective for

i ≤ n.

4. finitely n-presented if M is n-truncated and perfect to order (n+1).

5. finite generated, if it is perfect to order 0.

And when we consider the finite condition on algebra. We say a morphism ϕ : A→ B

of connective E∞-rings is

1. finite presentation if B belongs to the smallest full subcategory of CAlgfreeA and is
stable under finite colimits.

2. locally of finite presentation if B is a compact object of CAlgA.

3. almost of finite presentation if A is an almost compact object of CAlgA, that is,
τ≤nB is a compact object of τ≤nCAlgA for all n ≥ 0.
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4. finite generation to order n if the following conditions holds:

Let {Cα} be a filtered diagram of connective E∞-rings over A having colimit C.
Assume that each Cα is n-truncated and that each of the transition maps πnCα →
πnCβ is a monomorphism. Then the canonical map

lim
α

MapCAlgA
(B,Cα)→ MapCAlgA

(B,C)

is a homotopy equivalence.

5. finite type if it is of finite generation to order 0.

6. finite if B is a finitely generated as an A-module.

Proposition 2.1. [Lur18c, Proposition 2.7.2.1, Proposition 4.1.1.3] Let ϕ : A→ B be a
morphism of connective E∞-rings.. Then The following conditions are equivalent.

1. ϕ is of finite (finite type).

2. The commutative ring π0B is finite (finite type) over π0A.

Definition 2.2 [Lur18c, Definition 4.2.0.1] Let f : X → Y be a morphism of spectral
Deligne-Mumford Stack. We say that f is locally of finite type, (locally of finite genrera-
tion to order n, locally almost of finite presentation, locally of finite presentation) if the
following conditions is satisfied: for every commutative diagram

SpétB //

��

X

f

��
SpétA // Y

where the horizontal morphisms are étale, the E∞-ring B is finite type (finite generation
to order n, almost of finite presentation, locally of finite presentation) over A.
Definition 2.3 [Lur18c, Definition 5.2.0.1] Let f : (X,OX)→ (Y,OY ) be a morphism of
spectral Deligne-Mumford stacks, we say f is finite, if the following conditions hold

1. f is affine.

2. The push-forward is f∗OX is perfect to order 0 as a OY module.

Remark 2.4 By the [Lur18c, Example 4.2.0.2], A morphism f : X → Y of spectral
Deligne-Mumford stack is locally of finite type if the underlying map of spectral Deligne-
Mumford stacks is locally of finite type in the sense of ordinary algebraic geometry.

And by [Lur18c, 5.2.0.2], A morphism of f : X → Y is finite if the underlying map
f♡ : X♡ → Y ♡ is finite. If X and Y are spectral algebraic spaces, then f is finite is
equivalent to f♡ is finite is the sense of ordinary algebraic geometry.
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We recall that a morphism f : X → Y of spectral Deligne-Mumford stacks is sur-
jective if for every field k and any map Spétk → Y , the fiber product Spétk ×Y X is
nonempty [Lur18c, Definition 3.5.5.5].
Definition 2.5 Assume that we have a connective E∞ ring R. Let f : X → Y be a
morphism of spectral abelian varieties over R, we say f is an isogeny if it is flat, finite
and surjective.

Lemma 2.6. Let f : X → Y be a morphism of spectral abelian varieties, then f♡ : X♡ →
Y ♡ is an isogeny in the classical sense.

Proof. In classical abelian varieties, f♡ is an isogeny means f♡ is surjective and ker f♡

is finite. But it is equivalent to f♡ is finite, flat and surjective [Mil86, Proposition 7.1].
And it is easy to see that f♡ is finite, flat. We only need to prove that f♡ is surjective.

For every morphism |Speck| → |Y ♡|, this correspond to a morphism Spétk → Y ♡,
by the inclusion-truncation adjunction [Lur18c, Proposition 1.4.6.3], this corresponds to
a morphism Spétk → Y . By the definition of surjective, we get a commutative diagram

Spétk′

��

// X

��
Spétk // Y

The upper horizontal morphism corresponds to a morphism Spétk′ → X♡ by inclusion-
truncation adjunction. On the underlying topological space level, this corresponds to a
point |Spétk| → |Y ♡|. It is clear that this point in |Y ♡| is a preimage of |Spétk| in X♡.
So f♡ is surjective.

■

Lemma 2.7. Let f : X → Y be an isogeny of spectral elliptic curves over a connective E∞-
ring R, then fib(f) exists and is a finite and flat nonconnective spectral Deligne-Mumford
stack over R.

Proof. By [Lur18c, Proposition 1.14.1.1], the finite limits of nonconnective spectral
Deligne-Mumford stacks exists, so we can define fib(f). We consider the following diagram

fib(f) //

f ′

��

X

f
��

��4
44

44
44

44
44

44
44

4

∗ //

i

))SS
SSS

SSS
SSS

SSS
SS Y

##F
FF

FF
FF

FF

SpétR
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where the square is a pullback diagram. We find that fib(f) is over SpétR. By [Lur18c,
Remark 2.8.2.6], f ′ : fib(f) → ∗ is flat because it is a pull-back of a flat morphism.
Obviously i : ∗ → SpétR is flat, so by [Lur18c, Example 2.8.3.12] ( flat morphism is local
on the source for the flat topology), i ◦ f ′ : fib(f)→ SpétR is flat.

Next, we show ker f is finite over R. Since ∗, X and Y are all spectral algebraic
spaces, so we have fibf is also a spectral algebraic space. And SpétR is an algebraic
space [Lur18c, Example 1.6.8.2]. By the above remark 2.4, we only need to prove that
the underlying morphism is finite. The truncation functor is a right adjoint , so preserve
limits. So we get a pull-back diagram

fib(f)♡ //

��

X♡

��
∗ // Y ♡

So we are reduced to prove that for an isogeny f♡ : X♡ → Y ♡ of ordinary abelian
varieties over a commutative ring R. ker f is finite over R. But this is true in classical
algebraic geometry [Mil86, Proposition 7.1].

■

Lemma 2.8. Let fN : E → E be an isogeny of spectral elliptic curves over R, such that
the underline map of ordinary elliptic curve is the multiplication N map, N : E♡ → E♡.
Then fibf is finite locally free of rank N in the sense of [Lur18c, Definition 5.2.3.1]. And
moreover if N is invertible in π0R, then fibf is a locally constant étale sheaf.

Proof. By [KM85, Theorem 2.3.1], we know that N : E♡ → E♡ is locally free of rank
N in the classical sense. When N is invertible in π0R, then kerN is locally constant tale

sheaf. fib(fN) is a spectral algebraic space which is finite and flat and its underlying map
fib(fN)

♡ = kerN is locally free of rank N . We need to prove that fibfN → SpétR is locally
free of rank N in spectral algebraic geometry. But fibfN is finite and flat, so is affine. We
are reduce to prove this in local affine, i.e., we need ot prove that fN |SpétS : SpétS → SpétR

is locally free, for SpétS is an affine substack of fibfN . This is equivalent to prove that
R → S is locally free of rank N in the sense of [Lur18c, Definition 2.9.2.1]. So we need
to prove

1. S is locally free of finite rank over R.(By [Lur17, Proposition 7.2.4.20], this is equiv-
alent to say S is a flat and almost perfect R-module.)

2. For every E∞-ring maps R → k, the vector space π0(M ⊗R k) is a N -dimensional
k-vector space.

For (1), we know that π0S is projective π0R-module, and S is a flat R-module, so
by [Lur09a, Proposition 7.2.2.18], S is a projective R-module. And since π0S is a finitely
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generate R-module, so by [Lur17, Corollary 7.2.2.9], S is a retract of a finitely generated
free R-module M , so is locally free of finite rank.

For (2), π0(k ⊗R M)� since R and M are connective, by [Lur17, Corollary 7.2.1.23],
we get π0(k ⊗R M) ' k ⊗π0R π0M is a rank N k-vector space (π0M is rank N free π0R

module).
We next show that if N is invertible in π0R, then fibf is a locally constant sheaf. By

the above discussion, fibf is a spectral Deligne-Mumford stack, so the associated functor
points fibf : CAlgR → S is nilcomplete and locally of almost finite presentation. By
[KM85, Theorem 2.3.1], fibf |CAlg♡π0R

is a locally constant sheaf, the desired results follows
form the following lemma.

■

Lemma 2.9. Let F ∈ Shvét(CAlgcnR ), and is nilcomplete, locally of almost finite presen-
tation and F|(CAlgcnR )♡ is the associated sheaf of constant presheaf valued on A. Then F is
a homotopy locally constant sheaf (i.e., sheafification of a homotopy constant presheaf).

Proof. We choose a tale cover U0
i of π0R, such that F|U0

i
is a constant sheaf for each

i. By [Lur17, Theorem 7.5.1.11], this corresponds to an tale cover Ui → R such that
π0Ui = U0

i . We consider the following diagram

τ≤0R //

��

τ≤0U

��
τ≤nR // τ≤nU

which is push-out diagram, since Ui is an étale R algebra. This is a colimit diagram in
τ≤nCAlgR. F is a sheaf of locally of almost finite prsentation, so we get push-out diagram

F(τ≤0R) //

��

F(τ≤0Ui)

��
F(τ≤nR) // F(τ≤nUi)

For each i, we have such diagram. Without loss of generality, we can assume each Ui

is connective. So F(τ≤0Ui) are always same for all i. That means we have F(τ≤nUi) are
all equivalence. But we have F is nicomplete, this means F(Ui) ' colimF(τ≤nUi). So we
get all F(Ui) are homotopy equivalence.

■
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2.2 Relative Cartier Divisors
In the subsection, we will define the relative Cartier divisor in the context of Spectral

Algebraic Geometry. And we use Lurie’s spectral Artin’s representability theorem to
prove that relative Cartier divisor is representable in some good cases. We first recall the
following spectral Artin’s representability theorem.

Theorem 2.10. [Lur18c, Theroem 18.3.0.1] Let X : CAlgcn → S be a functor, if we have
a natural transformation f : X → SpecR, where R is a Noetherian E∞-ring and π0R is
a Grothendieck ring. For n ≥ 0, X is representable by a spectral Deligne-Mumford stack
which is locally almost of finite presentation over R if and only if the following conditions
are satisfied:

1. For every discrete commutative ring R0, the space X(R0) is n-truncated.

2. The functor X is a sheaf for the étale topology.

3. The functor X is nilcomplete, infinitesimally cohesive, and integrable.

4. The functor X admits a connective cotangent complex LX .

5. The natural transformation f is locally almost of finite presentation.

For a locally spectrally topoi X = (X ,Ox), we can consider its functor of points

hX :∞Toploc
CAlg → S, Y 7→ Map∞ToplocCAlg

(Y,X)

By [Lur18c, Remark 3.1.1.2], the closed immersion of locally spectrally ringed topos f :

X = (X ,OX )→ Y = (Y ,OY) corresponds to morphism of sheaves of connective E∞-rings
OX → f∗OY over X such that π0OX → π0f∗OY is surjective. We consider the the fiber
of this map fibf . For a closed immersion f : D → X of spectral Deligne-Mumford stack,
we let I(D) denote fib(f), called the ideal sheaf of D.

To prove the relative representability, we need the representability of the Picard
functor. If we have a map f : X → SpétR of spectral Deligne-Mumford stack, we can
define a functor

PicX/R : CAlgcnR → S, R′ 7→Pic(SpétR′ ×SpétR X)

If f admits a section x : SpétR→ X then there exists a natural transformation of functors
Pic(X/R)→PicR/R. We let

PicxX/R : CAlgcnR → S

denote the fiber of this map.
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Theorem 2.11. [Lur18c, Theorem 19.2.0.5] Let X be a map spectral algebraic spaces
which is flat, proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected over an E∞-ring R. And suppose that x : SpétR → X is a
section, the functor PicxX/R is representable by a spectral algebraic space which is locally
of finite presentation over R.

In the classical case, relative Cartier divisors schemes are open subschemes of Hilbert
schemes [Kol13]. But in the derived case, the Hilbert functor is representable by a spectral
algebraic space [Lur04, Theorem 8.3.3], it is hard to say relation to say the relation between
them. We will directly study relative Cartier divisors in derived world.
Definition 2.12 Suppose that X is a spectral Deligne-Mumford stack over a spectral
Deligne-Mumford stack S. We let CDiv(X/S) denote the∞-category of closed immersions
D → X, such that D is flat, proper, locally almost of finite presentation over S and the
associated ideal sheaf of D is locally free of rank one over X.
Remark 2.13 It is easy to say that for any spectral Deligne-Mumford stack X over S,
CDiv(X/S) is a kan complex, since all objects are closed immersions of X, let D → D′

be morphism, then we have a diagram

D
f //

  A
AA

AA
AA

A D′

~~||
||
||
||

X

by the definition of closed immersions, they all equivalent to the same substack of X, so
f is a equivalence.

Lemma 2.14. Let X/S be a spectral Deligne-Mumford stack, and T → S be a map of
spectral Deligne-Mumford stacks. If we have a relative Cartier divisor i : D → X, then
DT is a relative Cartier divisor of XT .

Proof. This is easy to see, we just notice that DT is still closed immersion of XT [Lur18c,
Corollary 3.1.2.3]. And after base change, DT is flat, proper, locally almost of finite
presentation over T . The only thing we need to worry is that whether I(DT ) is a line
bundle over XT ? But this is also true. Since we have a fiber sequence

I(D)→ OX → OD

after applying the morphism f ∗ : ModOX
→ ModOXT

, due to the flatness of D. We get
fiber sequence

f ∗(I(D))→ OXT
→ ODT

So we get I(DT ) is just f ∗I(D), so is invertible.
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■
By the construction of relative Cartier divisors, suppose that X is a spectral Deligne-

Mumford stack over an affine spectral Deligne-Mumford stack S = SpétR. We then have
a functor

CDivX/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

Our main target in this section is to prove this functor is representable when E/R is a
spectral algebraic space satisfying certain conditions. Before we start the prove of repre-
senability of relative Cartier divisor, we need some preparations for computing the cotan-
gent complex of a relative Cartier divisor functor. The main issiue is square extension.
We need following truth about pushout of two closed immersions.

By [Lur18c, Theorem 16.2.0.1, Proposition 16.2.3.1], suppose we have a pushout
square of spectral Deligne-Mumford stacks:

X01
i //

j

��

X0

j′

��
X1

i′ // X,

such that i and j are closed immersions. Then the induced square of ∞-categories

QCoh(X01) QCoh(X0)oo

QCoh(X1)

OO

QCoh(X)oo

OO

determines emdbedding θ : QCoh(X)→ QCoh(X0)×QCoh(X01) QCoh(X1) and restricts to
an equivalence

QCoh(X)cn → QCoh(X0)
cn ×QCoh(X01)cn QCoh(X1)

cn

Let F ∈ QCoh(X), and set

F0 = j′∗ ∈ QCoh(X0) F1 = i′∗F ∈ QCoh(X1).

Then the quasi-coherent sheaf F is n-connective is equivalent F0 and F1 are n-connective,
and this statement is also true for the condition, almost connective, Tor-amplitude ≤ n

flat, perfect to order n, almost perfec, perfect, locally free of finite rank.
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And by [Lur18c, Theorem 16.3.0.1], we the have a pullback square

SpDM/X
//

��

SpDM/X0

��
SpDM/X1

// SpDM/X01

of ∞-categories Let f : Y → X be a map of spectral Deligne-Mumford stacks.
Let Y0 = X0 ×X Y , Y1 = X1 ×X Y and let f0 : Y0 → X0 and f1 : Y1 → X1 be the
projections maps. Then we have [Lur18c, Proposition 16.3.2.1] f is locally almost of
finite presentation if and only if both f0 and f1 are locally almost of finite presentation.
And the statement is also trur for conditions: locally of finite generation to order n, locally
of finite presentation, étale, equivalence, open immersion, closed immersion, flat, affine,
separated and proper.

Let X = (X ,OX ) be a spectral Deligne-Mumford stack, and E ∈ QCoh(X)cn is a
quasi-coherent sheaf, and η ∈ Der(OX ,ΣE), that is map η : OX → OX ⊕ ΣE . We let Oη

X

denote the square-zero extension of OX by E determined by η, then we have a pull-back
diagram

Oη
X

//

��

OX

η

��
OX

// OX ⊕ ΣE

By [Lur18c, Proposition 17.1.3.4], (X ,Oη
X) is a spectral Deligne-Mumford stack,

which we will denote it by X η. In the case of η = 0, we denote it by XE = (X ,OX ⊕ E).
We then have a pullback square of spectral Deligne-Mumford stacks

XΣE

f
� �

g // X

��
X // Xη

such that f and g are closed immersions.
We have a pullback diagram

QCoh(Xη)acn

��

// QCoh(X)acn

��
QCoh(X)acn // QCoh(XΣE)acn.

by [Lur18c, Theorem 16.2.0.1, Proposition 16.2.3.1]. Taking η = 0 and passing ti homo-
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topy fiber over some F ∈ QCoh(X)acn, we can get

QCoh(XE)acn ×QCoh(X) {F} ' MapQCoh(X)(F ,Σ(E ⊗ F))

by [Lur18c, Proposition 19.2.2.2].
Taking η = 0 and passing to the homotopy fibers over some Z ∈ SpDM/X , we can

get classification of the first order deformations

SpDM/XE ×SpDM/X
{Z} ' MapQCoh(X)(LZ/X ,Σf

∗E),

see details in [Lur18c, Porposition 19.4.3.1].

Lemma 2.15. Let f : X → SpétR be a morphism of spectral Deligne-Mumford stacks.
For a connective R-module M, then the ∞-categories of Deigne-Mumford stacks X ′ with
a morphism X → Spét(R⊕M) such that fitting into the following pull back diagram

X //

��

X ′

��
SpétR // SpétR⊕M

is a Kan complex, which is canonically equivalent to the mapping space MapQCoh(LX/Y ,Σf
∗M),

and moreover if f is flat, proper and locally of almost finite presnetation, then any such
f ′ : X ′ → S[M ] is flat, proper and locally almost of finite presentation.

Proof. We have a pullback square in E∞-rings

R⊕M

��

// R

(Id,0)
��

R // R⊕ ΣM,

this corresponds a pushout square of spectral Deligne-Mumford stacks

SpétR⊕ ΣM //

��

SpétR

��
SpétR // SpétR⊕M

such that SpétR ⊕ ΣM → SpétR are closed immersion. That makes SpétR ⊕M be an
infinitesimal thickening of SpétR determined by R

(id,0)−→ R⊕ ΣM .
The first part of this lemma is just the formula of first order deformations[Lur18c,

Proposition 19.4.3.1], and the second part is properties of pushout of two closed immer-
sions [Lur18c, Corollary 19.4.3.3].
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■

Lemma 2.16. Suppose that we are given a pushout diagram of spectral Deligne-Mumford
stacks σ:

X01
i //

j

��

X0

��
X1

// X,

where i and j are closed immersions. Let f : Y → X be a map of spectral Deligne-Mumford
stacks. Let Y0 = X0 ×X Y , Y1 = X1 ×X Y and let f0 : Y0 → X0 and f1 : Y1 → X1 be the
projections maps.

If both f0 and f1 are closed immersions and determine line bundles over Y0 and Y1,
then f is a closed immersion and determines a line bundle.

Proof. The closed immersion part is just Lurie’s theorem. And for the line bundle part,
we notice that by [Lur18c, Theorem 16.2.0.1, Proposition 16.2.3.1], f determine a sheaf
of locally free of finite rank. To prove it is a line bundle, we can do it locally. By [Lur18c,
Theorem 16.2.0.2], for a pullback diagram

A //

��

A0

��
A1

// A01

of E∞-rings such that π0A0 → π0A01 ← π0A1 are surjective, then there is an equivalence
F : Modcn

A → Modcn
A0
×ModcnA01

Modcn
A1

. Actually this a symmetric monoidal equivalence.
Sice we have F (M) = (A0 ⊗A M,A01 ⊗A M,A1 ⊗A M). They satisfying F (M ⊗ N) '
F (M) ⊗ F (N). But by [Lur18c, Propsition 2.9.4.2], line bundles of A1, A0,1 and A0

determines invertible objects of Modcn
A1
,Modcn

A01
and Modcn

A1
, so determine a invertible

object of Modcn
A , hence a line bundle over A by [Lur18c, Propsition 2.9.4.2].

■

Theorem 2.17. Let E/R be a spectral algebraic space which is flat, proper, locally al-
most of finite presentation, geometrically reduced, and geometrically connected. Then the
functor

CDivE/R : CAlgR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic space which is locally almost of finite presentation
of R.
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Proof. We use Lurie’s spectral Artin’s represnetability theorem to prove this theorem.

1. For every discrete commutative R0, the space CDivE/R(R0) is 0-truncated.

We just notice that CDivE/R(R0), consists of closed immersions D → E ×R R0,
such that D is flat proper over R0, so all D are discrete object, so CDivE/R(R0) is
1-truncated.

2. The functor CDivE/R is a sheaf for the tale topology.

Let {R′ → Ui}i∈I be an étale cover of R′, and U• be the associate check simplicial
object. We need to prove that the map

CDivE/R(R
′)→ lim

∆
CDivE/R(U•)

is an equivalence. Unwinding the definitions, we only need to prove following general
result: for a spectral Deligne-Mumford stack X → S and we have a étale cover
Ti → S, then

CDiv(X/S)→ lim
∆

CDiv(X ×S T•)

is a homotopy equivalence. But this obvious, since our conditions of relative Cartier
divisor is local for the étale topology.

3. The functor CDivE/R is nilcomplete.

This is equivalent to say that the canonical map

CDivE/R(R
′)→ lim

←−
CDivE/R(τ≤nR

′)

This can be deduced form the following results: for a flat, proper, locally almost of
finite presentation spectral spectral algebraic space X over a connective E∞-ring S,
we have a equivalence

CDiv(X/SpétS)→ lim
←−

CDiv(X ×SpétS Spétτ≤nS).

Let us prove this equivalence now. For a relative Cartier divisor D → X, we have
the following commutative diagram

D ×SpétS Spétτ≤nS

��

((

// D

��
X ×SpétS Spétτ≤nS //

��

X

��
Spétτ≤nS // SpétS

17



We then get a induce map D ×SpétS Spétτ≤nS → X ×SpétS Spétτ≤nS. It is easy to
prove that this map is a closed immersion [Lur18c, Corollary 3.1.2.3], and D×SpétS

Spétτ≤nS → SpétS is flat, proper and locally almost of finite presentation, since
D ×SpétS Spétτ≤nS is the base change of D along Spétτ≤nS → SpétS, and the
associated ideal sheaf of D ×SpétS Spétτ≤nS is still a line bundle over X ×SpétS

Spétτ≤nS. So D×SpétS Spétτ≤nS is a relative Cartier divisor of X ×SpétS Spétτ≤nS.
Thus we have define a functor

θ : CDiv(X/S)→ lim
←−

CDiv(X ×SpétS Spétτ≤nS), D 7→ {D ×SpétS Spétτ≤nS}

This functor is fully faithful, since we have equivalence SpDM/S → lim
←

SpDM/τ≤nS

defined by X 7→ X ×SpétS Spétτ≤nS [Lur18c, Proposition 19.4.1.2]. To prove the
functor θ is an equivalence, we need to show it is essentially surjective. Suppose
{Dn} → X ×SpétS Spétτ≤nS is an object in lim

←−
CDiv(X ×SpétS Spétτ≤nS). It is a

morphism in lim
←−

SpDM/τ≤nS
, by [Lur18c, Proposition 19.4.1.2], there is a morphism

D → X in SpDM/S, satisfying D ×SpétS Spétτ≤nS → X ×SpétS Spétτ≤nS are just
Dn → X ×SpétS Spétτ≤nS.

Next, we need to show that such D → X is relative Cartier divisor. The condi-
tion that D → S is flat, proper and locally almost of finite presentation follows
immediately from [Lur18c, Proposition 19.4.2.1]. We need to prove that D → X

is a closed immersion and determine a line bundle over X. Without loss of gen-
erality, we may assume that X = SpétB is affine, so we have closed immersion
D ×SpétS Spétτ≤nS → SpétB ×SpétS Spétτ≤nS ' Spét(B ⊗S τ≤nS), the second
equivalence comes from [Lur18c, Proposition 1.4.11.1(3)]. And by [Lur18c, The-
orem 3.1.2.1], D ×SpetS Spétτ≤nS equals SpétB′n for each n, such that π0(B ×S

τ≤nS) → π0B
′
n is surjective. Since we have τ≤nS → B′n is flat, we get SpétB′n =

SpétB′n+1 ×Spétτ≤n+1S Spétτ≤nS = Spét(B′n+1 ×τ≤n+1S τ≤nS) ' Spétτ≤nB
′
n+1. So we

get a spectrum B′ such that τ≤nB
′ ' SpétB′n = D ×SpétS Spétτ≤nS. Consequently

D = SpétB′, and π0B → π0B
′ is surjective, so D = SpétB′ → SpétB = X is a

closed immersion. To prove that the associated ideal sheaf of D is a line bundle, we
notice that there is a pullback diagram.

In //

��

B ×S τ≤nS

��
∗ // B′ ×S τ≤nS,

each In is an invertible B×S τ≤nS = τ≤nB module. Passing to the inverse limit, we
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get
lim
←−

In //

��

B

��
∗ // B′.

Consequently, we have I(D) ' lim
←−

In. So by the nilcompleteness of Picard functor
[Lur18c, Corollary 19.2.4.6, Propostion 19.2.4.7], We get I is a invertible B-module.
So the associated ideal sheaf of D is a line bundle of X.

4. The functor CDivE/R is cohesive.

This statement follows from Proposition 2.16 and [Lur18c, Proposition 16.3.2.1].

5. The functor CDivE/R is integrable. We need to prove that for R′ a local Noetherian
E∞-ring which is complete with respect to its maximal ideal m ⊂ π0R. Then the
inclusion functor induces a homotopy equivalence

MapFun(CAlgcn,S)(SpétR
′,CDivE/R)→ MapFun(CAlgcn,S)(SpfR

′,CDivE/R).

But this follows from the following result: for a flat proper, locally almost of finite
presentation and separated spectral spectral algebraic space X over a connective
E∞-ring S, we have equivalence

CDiv(X/S) ' CDiv(X ×SpétS SpfS)

Let Hilb(X/S) denote the full subcategory of SpDM/X consists of those D → X,
such that D → X is a closed immersion and D → S is flat, proper and locally almost
of finite presentation. Then by the formal GAGA theorem [Lur18c, Theorem 8.5.3.4]
and base change properties of flat, proper and locally almost of finite presentation,
we have Hilb(X/S) ' Hilb(X ×SpétS SpfS). To prove the equivalence of relative
Cartier divisors, we need to check that D → X associated a line bundle over X if
and only if D×SpétSSpfS associated a line bundle over X×SpétSSpfS. We notice that
since X ×SpétS SpfS is flat over X, we have I(D ×SpétS SpfS) = I(f ∗D) ' f ∗I(D)

D ×SpétS SpfS //

��

D

��
X ×SpétS SpfS

f // X.

By [Lur18c, Proposition 19.2.4.7], we have an equivalence

QCoh(X/S)aperf,cn ' QCoh(X ×SpétS SpfS)aperf,cn
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By restricting to subcategories spanned by invertible object and using [Lur18c,
Proposition 2.9.4.2], we get D associated a line bundle over X if and only if D×SpétS

SpfS associated a line bundle over X ×SpétS SpfS.

6. CDivE/R is locally almost of finite presentation.

We need to prove that CDivE/R : CAlgR → S, R′ 7→ CDiv(ER′/R′) commutate with
filtered colimits when restrict to τ≤nCAlg

cn
R . But we notice that CDiv(ER′/R′) are

full categories of SpDM/ER′→R′ , we consider the functor

R′ 7→ Var+/ER′→R

where Var+/ER′→R consists of the diagram

D //

##F
FF

FF
FF

FF
ER′

��
SpétR′

such that D → R′ is flat, proper, and locally almost of finite presentation. Then
by [Lur18c, Proposition 19.4.2.1]. This functor commutates with filtered colimits
when restrict to τ≤nCAlg

cn
R . Then we just need to prove that when {Di → Ei

R′}i∈I
are closed immersions and determine line bundles in {Ei

R′}, then colimDi are closed
immersion of colimEi

R′ and determine line bundle in colimEi
R′ . But this fact follows

from the locally almost of finite presentationnes of Picard functor and properties of
closed immersions.

Consider the functor CDivE/R → ∗, it is infitesimally cohesive and admits a cotan-
gent complex which is almost perfect, so by [Lur18c, 17.4.2.2], it is locally almost
of finite presentation. So CDivE/R is locally almost of finite presentation, since ∗
is a final object of Fun(CAlgcn,S).

7. The functor CDivE/R admits a complex L which is connective and almost perfect.

For a connective E∞-ring S, and every η ∈ CDivE/R(S), and a connective S-module
M. We have a pullback diagram

Fη(M) //

��

CDivE/R(S ⊕M)

��
η // CDivE/R(S)
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Then we have a functor

Fη : ModS → S, M 7→ Fη(M)

We need to prove that this functor is corepresentable. η corresponds a morphism
D → E ×R S, and E ×R (S ⊕M) is a square zero extension of E ×R S. So by
the classification of first order deformation theory [Lur18c, Propostion 19.4.3.1], the
space of D′, which satisfying the pullback diagram

D //

f

��

D′

��
E ×R S //

p

��

E ×R (S ⊕M)

��
SpétS // Spét(S ⊕M)

is equivalent to

MapQCoh(D)(LD/E×RS,Σf
∗E) = MapQCoh(D)(LD/E×RS,Σf

∗ ◦ p∗M)

Push forward along p ◦ f , and by [Lur18c, Proposition 6.4.5.3] we have

MapQCoh(D)(LD/E×RS,Σf
∗ ◦ p∗M) ' MapQCoh(SpétS)(Σ

−1p+ ◦ f+LD/E×SpétRSpétS,M).

And by [Lur18c, Proposition 16.3.2.1] and Lemma 2.16, any such D′ is a closed
immersion of CDivE/R(S ⊕M) and determine a line bundle of CDivE/R(S ⊕M).
Since the diagram

D //

��

D′

��
SpétS // SpétS ⊕M

is a pullback diagram, so D′ is a square zero extension of D. By [Lur18c, Proposition
16.3.2.1], we get D′ → Spét(S ⊕ M) is flat, proper and locally almost of finite
presentation. Combining these facts, we find that

Fη(M) = MapQCoh(SpétS)(Σ
−1p+ ◦ f+LD/E×SpétRSpétS,M).

Consequently, the functor CDivE/R satisfies condition (a) of [Lur18c, Example
17.2.4.4] and condition (b) follows form the compatibility of f+ with base change. It
then follows that CDivE/R admits a cotangent complex LCDivE/R

satisfying η∗LCDivE/R
=
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Σ−1p+ ◦ f+LD/E×SpétRSpétS. Since the quasi-coherent sheaf LD/E×SpétRSpétS is connec-
tive and almost perfect. The R-module Σ−1p+◦f+LD/E×SpétRSpétS is (-1) connective.

LCDivE/R
is almost perfect, since we have CDivE/R it is infitesimally cohesive and

admits a cotangent complex. And it is locally almost of finite presentation, so by
[Lur18c, 17.4.2.2], its cotangent complex is almost perfect.

We next show that it is connective. Let R′ be an E∞-ring, and η ∈ CDiv(ER′/R),
we wish to prove that M = η∗LCDivE/R

∈ Mod′R is connective. We already know
that M is is (-1)-connective and almost perfect, the homotopy group π−1M is a
finitely generated π0R

′ module. To prove that π−1 vanishes. By the Nakayama’s
lemma, this is equivalent to prove that

π−1M(k ⊗R′ M) ' Torπ0R′

0 (k, π−1M)

equals to 0 for every residue filed of R. Then we may replace R′ by k and assume
k is a algebraically closed filed.

Let A = k[t]/(t2), unwinding the definitions, we find that the dual space Homk(π−1M,k)

can be identify with the set of automorphism of ηA such that it restrict identity of
η. we wish to prove this set is trivial. But this follow from the fact : Let X/k be
scheme, L is an line bundle on X, if LA is also a line bundle of XA. If we have f is
an automorphism of LA such that f |L is identity on L, then f is the identity. (This
fact follows from the connectiveness of cotangent complexes of Picard functors.)

■

3 Derived Level Structures

3.1 Derived Level Structures of Spectral Elliptic Curves
Let C be a one dimensional smooth commutative group scheme over a base scheme

S, and A be an abstract finite abelian group. A homomorphism of abstract groups

ϕ : A→ C(S)

is said to be an A-Level structure on C/S if the effective Cartier divisor D in C/S defined
by

D = Σa∈A[ϕ(a)]

is a subgroup of C/S.
The following result due to Katz-Mazur [KM85] give the representability of level

structures moduli problems.
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Proposition 3.1. [KM85, Proposition 1.6.2] Let C/S be an one dimensional smooth
commutative group scheme over S. Then the functor

LevelC/S : SchS → Set

T 7→ the set of A-level structures on CT/T

is representable by a closed subscheme of Hom(A,C) ∼= C[N1]×S · · · ×S C[Nr].

Definition 3.2 Let E/R be a spectral elliptic curve. In the level of objects, a derived
A-level structure is a relative Cartier divisor ϕ : D → E of E, such that the underlying
morphism D♡ → E♡ is the inclusion of the associated relative Cartier divisor Σa∈A[ϕ0(a)]

into E♡, where ϕ0 : A → E♡(R♡) is any classical level structure. We let Level(A, E/R)

denote the∞-category of derived A-level structures of E/R, whose objects can be viewed
as pairs ϕ = (D,ϕ).

It is easy to see that for a spectral elliptic curve E/R, the∞-category Level(A, E/R)

is a ∞-groupoid, since it is a full subcategory of CDiv(E/R), which is a ∞-groupoid.

Lemma 3.3. Let E/R be a spectral elliptic curve and ϕS : D → E be a derived level
structure. Suppose that T → S be a morphism of nonconnective spectral Deligne-Mumford
stacks, then the induce morphism ϕS : DT → ET is a derived level structure of ET/T .

Proof. We notice that derived level structure is stable under base change. So ϕ♡S : A→
(E ×S T )♡(T0) = E♡(T0) is classical level structure, so D♡T is the associated classical
relative Cartier divisor of a classical level structure. And DT → ET is a relative Cartier
divisor in spectral algebraic geometry, this is just the base change of relative Cartier
divisor (Lemma 2.14).

■
We first recall a proposition in Katz and Mazur’s book [KM85, Corollarly 1.3.7]:

Suppose that C/S is a smooth group curve, and D is a relative Cartier divisor of C, then
exists a closed subscheme Z of S, satisfying for any T → S, DT is a subgroup of CT if
and only if T passing through Z.

Lemma 3.4. Let E/R be a spectral elliptic curve, and D → E be a relative Cartier divisor.
There exists a closed spectral Deligne-Mumford substack SpétZ ⊂ SpétR, satisfying the
following universal property:

For any S ∈ CAlgcnR , such that the associated sheaf of DS is a relative Cartier divisor
of XS and (DS)

♡ is a subgroup of (ES)
♡ if and only if R→ S factor through Z.

Proof. For a map R → S, it is obvious that DS is a relative Cartier divisor of XS. By
[KM85, Corollarly 1.3.7], we just notice that if (DS)

♡/π0S is a subgroup of (ES)
♡/π0S,
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we have Specπ0S must passing through a closed subscheme SpecZ0 of Specπ0R. This
corresponds a closed spectral subscheme SpecZ of SpecR, sice we have the map R → S

such that π0R → π0S pass through π0R/I for some ideal I of π0R, so we have R → S

passing through RNil(I), see [Lur18c, Chapter 7] for details about nilpotent R-module.
Conversely, suppose that R→ S passing through Z, then we have S = OSpétS is vanishing
on I. That is we have π0R→ π0S passing through π0R/

√
I, but this is equivalent to say

Specπ0S → Specπ0R passing through Specπ0R/I = SpecZ0, and so (DS)
♡ is a subgroup

of (ES)
♡.

■

Theorem 3.5. Let E/R be a spectral elliptic curve, then the functor

LevelE/R : CAlgcnR → S
R′ 7→ Level(A, ER′/R′)

is representable by a closed substack S(A) of CDivX/R. Moreover, S(A) = SpétPE/R for
an E∞-ring SpétPE/R, which is locally almost of finite presentation over R, .

Proof. By definition, the functor LevelE/R is a subfunctor of the representable functor
CDivX/R. We consider a spectral Deligne-Mumford stack GroupCDiv defined by the
pullback diagram of spectral Deligne-Mumford stacks

GroupCDivE/R

��

// CDivE/R

��
SpétZ // SpétR.

It is easy to say that GroupCDivE/R valued on a R-algebra R′ is the space of relative
Cartier divisors D of E ×SpétR SpétR′, such that D♡ is a subgroup of (E ×SpétR SpétR′)♡.
It is cleared that

GroupCDivE/R =
∐

A0∈FinAb

A0 − CDivE/R

where A0 − CDivE/R valued on a R-algebra R′ is the space of relative Cartier divisors
D of E ×SpétR SpétR′, such that D♡ is an algebric subgroup of (E ×SpétR SpétR′)♡ and
D♡(R′) = A0. It is cleared that LevelE/R = A − CDivE/R, so we have LevelE/R is
representable by a open substack of GroupCDivE/R.

To prove the second part, we consider the map S(A)→ SpétR, they are all spectral
algebraic spaces. By [Lur18c, Remark 5.2.0.2], a morphism between spectral algebraic
spaces is finite if and only if its underlying morphism between ordinary spectral algebraic
space is finite in ordinary algebraic geometry. So we only need to prove S(A)♡ is finite
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over Specπ0R, but this is just the classical case since S(A)♡ is the representable object of
the classical level structure, which is finite over R0 by [KM85, Corollary 1.6.3].

■

3.2 Derived Level Structures of Spectral p-Divisible Groups
Before we talk about derived level structures of spectral p-divisible groups, let us

first review something about the classical level structures of commutative finite flat group
schemes. Let X/S be a finite flat S-scheme of finite presentation of rank N , it can be
prove that X/S is finite locally free of rank N . This means that for every affine scheme
SpecR → S, the pullback scheme X ×S SpecR over SpecR have the form SpecR′, where
R′ is an R-algebra which is locally free of rank N . For an element f ∈ R′ which can acts
on R′ by multiplication, define an R-linear endmorphism of B′. Because R′ is a locally
free of rank N . Then multiplication of f can be representable by a N × N matrix Mf .
Then we can define the characteristic polynomial of f to be the characteristic polynomial
of Mf , i.e.,

det(T − f) = det(T −Mf ) = TN − trace(Mf ) + · · ·+ (−1)NNorm(f).

Let {P1, · · · , PN} be a set of N points in X(S), we say this set is a full set of sections
of X/S if one of the following two conditions are satisfied:

1. For any SpecR→ S, and f ∈ B = H0(XR,O), we have the equality

det(T − f) =
N∏
i=1

(T − f(pi)).

2. For every SpecR→ S, and f ∈ B = H0(XR,O), we have

Norm(f) =
N∏
i=1

f(pi).

Actually, these conditions are equivalent.

If we have N not-necessarily-distinct points {P1, · · · , PN} in X(S), then we have a
morphism

OZ →
⊗
i

(Pi)∗(OS)

of sheave over X. It is easy to see that this map is surjective, and it defines a closed
subscheme D of X, which is flat, proper over S. So by the construction, for a ϕ :
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A → X(S), we can define closed subscheme D of X which corresponds to the sheave
⊗a∈Aϕ(a)∗OS.

Lemma 3.6. For a finite flat and finite presentation S-scheme Z, Hom(A,Z) is an open
subscheme of HilbZ/S.

Proof. Let T → S be a S-scheme, for any D → Y = T ×S Z in Hilb(Y ) = Hilb(T ×S Z),
we need to prove that the set of points t ∈ T which satisfying Dt → Yt is coming
from the closed subscheme associated with a map ϕ : A → Z(T ) = Y (T ) is an open
subset of T. Since D is the closed subscheme defined by OY → OD, if Dt comes form
OY |t →

⊗
(Pi)∗(OT )|t. Then by the definition of stalks of sheaves, there exists an open

subset U of D such that t ∈ U , and DU is defined by OY |U →
⊗

(Pi)∗(OT )|U .
■

Definition 3.7 Suppose that G/S be a rank N commutative finite flat S-group scheme
of finite presentation and A is a finite abelian group of order N . A group homomorphism

ϕ : A→ G(S)

is called an A-generator of G/S, if the N points {ϕ(a)}a∈A are a full subset of sections of
G(S). In these cases, we say ϕ is a Drinfeld level structure.

Proposition 3.8. [KM85, Proposition 1.10.13] Suppose that G is a rank N finite flat
commutative group scheme of finite presentation over S and A is a finite abelian group of
order N . Then we have the following two propositions:

1. The functor A−Gen(G/S) on S-schemes defined by

T 7→ {ϕ|ϕ : A→ G(T ) is a Drinfeld level structure}

is representable by a finite S-scheme of finite presentation. Actually, it is the closed
subscheme of HomSchS(A,G) over which the image of sections {ϕuniv(a)}a∈A of the
universal homomorphism ϕuniv : A→ G form a full set of sections.

2. If G/S is finite étale over S of rank N, we have

A−Gen(G/S) ' IsomSchS(A,G),

such that each connected component of S, A−Gen(S) is either empty or is a finite
tale Aut(A)-torsor.
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Derived Level Structures of Spectral Finite Flat Group Schemes
For a spectral commutative finite flat group scheme G over R. By the definition of

finite flat, we have G = SpétB for a finite flat R-algebra B. We let Hilb(G/R) denote
the full subcategory of SpDM/G spanned by those D → G such that D → G is a closed
immersion of spectral Deligne-Mumford stacks, and the composition D → G → R is
flat, proper and locally almost of finite presentation. Then we find Hilb(G/R) is actually
equivalent to the ∞-category of diagrams which have the form

R //

  A
AA

AA
AA

B

~~}}
}}
}}
}

R′

such that R′ is flat, proper and locally almost of finite presentation over R and satisfies
certain conditions. It is easy to see that Hilb(G/R) is a Kan complex. Then we can define
a functor

HilbG/R : CAlgcnR → S
R′ → Hilb(GR′)

Theorem 3.9. Suppose that G is a commutative finite flat group scheme over an E∞-
ring R, then HilbG/R is representable by a spectral Deligne-Mumford stack which is locally
almost of finite presentation over R.

Proof. This is just a special case of spectral algebraic geometry version of Lurie’s theorem
[Lur04, Theorem 8.3.3].

■
Remark 3.10 We can proof this theorem by the same argument of the proof of repre-
sentability of relative Cartier divisors.
Definition 3.11 Let G be a spectral commutative finite flat group scheme of rank N over
an E∞-ring R, and A be an abstract finite abelian group of order N , an A-level structure
of G is an object ϕ : D → G in Hilb(G/R), such that π0ϕ∗OD ' ⊗ϕ(a)∗OSpecπ0R, where
ϕ(a)∗OSpecπ0R comes from a map ϕ : A→ G♡(π0R).

Lemma 3.12. Let G/R be a spectral commutative finite flat group scheme of rank N over
an E∞-ring R and let D be a Hilbert closed subscheme of G. Then there exists a E∞-ring
Z, satisfying the following universal property:

For any R → R′ in CAlgcnR , (DR′)♡ is a derived A-level structures of (GR′)♡ if and
only if R→ R′ factor through Z.
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Proof. For R→ R′ in CAlgcnR , it is obvious that DR′ is in Hilb(GR′/R′). This means that
(DR′)♡ is a Hilbert closed subscheme of (GR′)♡. For DR′ to be a derived level structure,
we have D♡R′ must lie in Hom(A,G♡)(π0R

′), this means that Specπ0R
′ → Specπ0R must

passing through an open of Specπ0R, since Hom(A,G♡) can be viewed as a open sub
scheme of Hilb(G♡/R♡). Then we have π0R → π0R

′ passing through W0, where W0 is a
localization of π0R, so we have R→ R′ must passing through W , where W is an E∞-ring,
which is a localization of R. As for now, we already have a map SpétR′ → SpétW , such
that DR′ is a Hilbert closed subscheme of GR′ , and π0i∗ODR′ comes from a map ϕ : A→
G♡(π0R

′). For DR′ want to be a derived level structure, OG♡ → ϕ(a)∗(OSpecπ0R′) needs
to be an isomorphism, i.e., these N points ϕ(a)a∈A must be a full section of G♡(π0R

′).
By [KM85, Proposition 1.9.1], for a set of N points of (G♡(π0R

′)) to be a full section of
G♡(π0R

′), Specπ0R
′ → Specπ0W must passing through a closed subscheme of SpecW0.

Then π0W → π0R
′ must passing through Z0, where Z0 is equals π0W/I for some ideal I

of π0W . This means that we have W → R′ pass through Z = WNil(I). By the discussion
above, we have Z is the desired E∞-ring. And the converse is also true by the same
discussion in the derived level structures of curves.

■

Proposition 3.13. Suppose that G is a spectral commutative finite flat group scheme of
rank N over an E∞-ring R and A is an abstract finite abelian group of order N . Then
the following functor

LevelAH/R : CAlgR → S; R′ → Level(A, GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S(A) = SpétPG/R.

Proof. We first prove the representability. By definition, the functor LevelAG/R is a
subfunctor of the representable functor HilbG/R. We consider a spectral Deligne-Mumford
stack S(A) defined by the pullback diagram of spectral Deligne-Mumford stacks

S(A)

��

// HilbG/R

��
SpétZ // SpétR.

It is easy to say that S(A) valued on a R-algebra R′ is the Hilbert closed subscheme D of
E×SpétR SpétR′, such that D♡ is a derived level A-structure of (E×SpétR SpétR′)♡. Then
S(A) is the desried stack.

For the affine condition, we need to prove that S(A) is finite in spectral algebraic
geometry. By [Lur18c, Remark 5.2.0.2], a morphism between spectral algebraic spaces is
finite if and only if its underlying morphism between ordinary spectral algebraic space is
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finite in ordinary algebraic geometry. We have S(A) and SpétR are spectral spaces. So
we only need to prove S(A)♡ is finite over R0, but this is just the classical case, which is
finite by [KM85, Proposition 1.10.13].

■

Derived Level Structures of Spectral p-Divisible Groups
Remark 3.14 We let FFG(R) denote the ∞-category of spectral commutative finite
flat group schemes over an E∞-ring R. By [Lur18a, Proposition 6.5.8], there is another
equivalent definition of spectral p-divisible group [Lur18b, Definition 6.0.2]. A spectral
p-divisible group over a connective E∞-ring R is just a functor

G : CAlgcnR → Modcn
Z

which satisfies the following conditions:

1. Suppose that S ∈ CAlgcnR , the spectrum G(S) is p-nilpotent, i.e., G(S)[1/p] ' 0.

2. For M be a finite ableian p-group, the functor

CAlgcnR → S, S 7→ MapModZ
(M,G(S))

is copresentable by a finite flat R-algebra.

Let X be a spectral p-divisible group of height h over an E∞-ring R, that is a functor

X : Abp
fin → FFG(R).

For every pk ∈ Abp
fin, we let X[pk] denote the image of pk of X. We find that X[pk] is a

rank (pk)h spectral commutative finite flat group schemes over R.
Definition 3.15 Let G be a spectral p-divisible group of height h over a connective E∞-
ring R . For A a finite abelian group, an derived (Z/pkZ)h-level structure of G is a derived
(Z/pkZ)h-level structure

ϕ : D → G[pk]

of G[pk], which is a spectral commutative finite flat scheme over R. We let Level(k,G/R)

denote the ∞-groupoid of derived (Z/pkZ)h-level structures of G/R.

Theorem 3.16. Let G be a spectral p-divisible group of height h over an E∞-ring R.
Then the following functor

LevelkG/R : CAlgR → S; R′ → Level(k,GR′/R′)
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is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPk
G/R.

Proof. We just notice that by the definition of spectral p-divisible group, G[pk] is a
spectral commutative finite flat scheme. Then the theorem follows form the above result
of general spectral commutative finite flat group scheme.

■

Non-Full Level Structures
The above cases only cares full level structures of commutative finite flat schemes,

actually we can define general level structures of finite flat group schemes. Let G be a
spectral commutative finite flat group scheme of rank N over an E∞-ring R, and A be an
abstract finite abelian group, an derived A-level structure of G is an object ϕ : D → G

in Hilb(G/R), such that D♡ is a subgroup of G and G♡(π0R) is isomorphic to A. We let
Level1(A, G/R) denote th space of derived A-level structure. And Level0(A, G/R) denote
the space of equivalence class D → G in Hilb(G/R) such that G♡(π0R) is isomorphic to
A, two object D,D′ are equivalent if the image of D♡ → G♡ and D′♡ → G♡ are same.

Proposition 3.17. Suppose that G is a spectral commutative finite flat group scheme
of rank N over an E∞-ring R and A is an abstract finite abelian group of order not
necessarily equal to N. Then the following functor

Level1,AG/R : CAlgcnR → S; R′ → Level1(A, GR′/R′)

is representable by an affine spectral Deligne-Mumford stack.

Proof. We just notice that the classical level structure functor Level(A,G♡/π0R) is
representable by a closed subscheme Hom(A,G), the using the same discussion of full
level case, we get the desired result.

■
Remark 3.18 The above proposition also true for Level0,A. By the spectral commutative
finite flat scheme cases, we can get the representability results of spectral p-divisible group
case.

We let Level1(k,G/R) denote the ∞-groupoid of derived (Z/pkZ)-level structures of
G/R. Then the following functor

Level1,kG/R : CAlgcnR → S; R′ → Level1(k,GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S1(k) = SpétP1,k
G/R.
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We let Level0(k,G/R) denote the∞-groupoid of derived (Z/pkZ)-level generators of
G/R. Then the following functor

Level0,kG/R : CAlgcnR → S; R′ → Level0(k,GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S0(k) = SpétP0,k
G/R.

4 Applications

4.1 Spectral Elliptic Curves with Derived Level Structures
There exists a spectral Deligne-Mumford stack Mell whose functor of points is

Mell : CAlgcn → S
R 7−→Mell(R),

where Mell(R) = Ell(R)≃ is the underline ∞-groupoid of the ∞-category of spectral
elliptic curves over R.

And we have the classical Deligne-Mumford stack of classical elliptic curves, which
can be viewed as a spectral Deligne-Mumford stack

Mcl
ell : CAlgcn → S

R 7−→Mcl
ell(π0R)

where Mcl
ell(π0R) is the groupoid of classical elliptic curves over the commutative ring

π0R.
And for A denote Z/NZ, or Z/NZ× Z/NZ, we have the classical Deligne-Mumford

stack of classical elliptic curves with level-A structures, which can also be viewed as a
spectral Deligne-Mumford stack.

Mcl
ell(A) : CAlgcn → S

R 7−→Mcl
ell(A)(π0R)

where Mcl
ell(A)(π0R) is the groupoid of classical elliptic curves with level A-structures

over the commutative ring π0R.
In last chapter, we define and study derived level structures. The construction X 7→

Level(A, X/R) determines a functor Ell(R) → S which is classified by a left fibration
Ell(A)(R)→ Ell(R). Objects of Ell(A)(R) are pairs (E, ϕ), where E is a spectral elliptic
curve and ϕ is a derived level structures of E.
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For every R ∈ CAlgcn, we can consider all spectral elliptic curves over R with derived
level structures. This moduli problem can be thought as a functor

Mell(A) : CAlgcn → S
R 7−→Mell(A)(R) = Ell(A)(R)

where Ell(A)(R) is the space of spectral elliptic curves E with a derived level structure
ϕ : A → E.

Proposition 4.1. The functor Mell(A) : CAlgcn 7→ S is an étale sheaf.

Proof. Let {R → Ui} be an étale cover of R, and U• be the associate check simplicial
object. We consider the following diagram

Ell(A)(R)≃
f //

p

��

lim∆ Ell(A)(U•)≃

q

��
Ell(R)≃

g // lim∆ Ell(U•)
≃.

The left map p is a left fibration between Kan complex, so is a Kan fibration [Lur09a,
Lemma 2.1.3.3]. And the right vertical map is pointwise Kan fibration. By picking a suit
model for the homotopy limit we may assume that q is a Kan fibration as well. We have
g is an equivalence by [Lur18a, Lemma 2.4.1]. To prove that f is a equivalence. We only
need to prove that for every E ∈ Ell(R), the map

p−1E ' Level(A, E/R)→ lim
∆

Level(A, E ×R U•/U•) ' q−1g(E)

is an equivalence. We have the Level(A, E) as full ∞-subcategory of CDiv(E/R) and
lim∆ Level(A, E ×R U•) as a full subcategory of

lim
∆

CDiv(E ×R U•(U•))

But CDiv is an tale sheaf. So the functor

Level(A, E/R)→ lim
∆

Level(A, E ×R U•/U•).

is fully faithful. To prove it is a equivalence, we only need to prove it is essentially
surjective.

For any {ϕU• : D → E ×R U•} in lim∆ Level(A, E ×R U•/U•). Clearly, we can find a
morphism ϕR : D → E in CDiv(E/R) whose image under the equivalence CDiv(E/R) '
lim∆ CDiv(E×RU•/U•) is {ϕU• : D → E×RU•}. We just need to prove this ϕR : D → E
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is a derived level structure. This is true since in the classic case, Level(A,E♡(R0)) '
lim∆ Level(A,E♡(τ≤0U•)) and ϕR : D → E is already a relative Cartier divisor.

■

Lemma 4.2. Mell(A) : CAlgcn → S is a nilcomplete functor, i.e., Mell(A)(R) is the
homotopy limit of the following diagram

· · · → Mell(A)(τ≤mR)→Mell(A)(τ≤m−1R)→ · · · →Mell(A)(τ≤0R)

Proof. For a spectral elliptic curve R, there is an obvious functor

θ :Mell(A)(R)→ lim
←n
Mell(A)(τ≤nR)

define by (E, ϕ : D → E) 7→ {(E ×SpétR Spétτ≤nR, ϕn : D ×SpétR Spétτ≤nR → E ×SpétR

Spétτ≤nR)}n. Here we notice that (E×SpétRSpétτ≤nR, ϕn : D×SpétRSpétτ≤nR→ E×SpétR

Spétτ≤nR) is in Mell(A)(τ≤nR).
First, we prove that θ is essentially surjective. An object in lim

←m
Mell(A)(τ≤mR) can

be written as a diagram

· · · //

��

Dn+1
//

��

Dn
//

��

Dn−1 //

��

· · · //

��

D0

��
· · · // En+1

// En
// En−1 // · · · // E0

where each En is spectral elliptic curve over τ≤nR and Dn → En is a derived
level structure, and satisfying Dn = Dn+1 ×Spétτ≤n+1R Spétτ≤nR,En = En+1 ×Spétτ≤n+1R

Spétτ≤nR. By the nilcompletness of Mell, we get a spectral elliptic curves E, such that
E ×R τ≤nR ' En, and by the nilcompletness of Var+ [Lur18c, Proposition 19.4.2.1],
we get a spectral Deligne-Mumford stack D, such that Dn = D ×SpétR Spétτ≤nR. We
need to prove the induce map D → E is a derived level structure, but this follows form
nilcompletness of LevelE/R.

Second, we need to prove that this functor is fully faithful. Unwinding the definitions,
we need to prove that for every (X,D1 → X), (Y,D2 → Y ) ∈ Mell(A)(R), the following
map is a homotopy equivalence.

MapMell(A)(R)((X,DX), (Y,DY ))→ MapMell(A)(R)(lim←n
(Xn, DX,n), lim←n

(Ym, DY,m)).

where Xn is τ≤nX = X ×R τ≤nR, and Y , DX,n, DY,n similarly.
But we notice that this is equivalent to following equivalence

MapSpDM/R
((X,DX), (Y,DY ))→ lim

←−n
MapSpDMτ≤n

((Xn, DX,n), (Yn, DY,n)).
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And this equivalence follows from [Lur18c, Proposition 19.4.1.2]
■

Lemma 4.3. Mell(A) : CAlgcn → S is a cohesive functor.

Proof. For every pullback diagram

D //

��

A

��
C // B

in CAlgcn such that the underlying homomorphisms π0A → π0B ← π0C are surjective.
We need to prove that

Mell(A)(D) //

��

Mell(A)(A)

��
Mell(A)(C) //Mell(A)(B)

is a pullback diagram.
We have the following diagram in Fun(CAlgcn,S),

Mell(A)
g //

f
%%KK

KKK
KKK

KK
Mell

h

��
∗

By [Lur18c, Remark 17.3.7.3],Mell ∗(A) is a cohesive fucntor if and only if f is cohe-
sive. Since we haveMell is cohesive functor, h is a cohesive morphism in Fun(CAlgcn,S).
And again by [Lur18c, Remark 17.3.7.3], f is cohesive if and only if g is cohesive. So we
only need to prove that g is a cohesive morphism. But by [Lur18c, Proposition 17.3.8.4]
g is cohesive if and only if each fiber of g is cohesive, i.e., for R ∈ CAlgcn and a point
ηE ∈Mell(R) which represents a spectral elliptic curve E, the functor

fE : CAlgcnR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}

is cohesive. But we have R′ 7→ Mell(A)(R′) ×Mell(R′) {ηE} ' Level(A, E ×R R′/R′) '
LevelE/R(R

′). The cohesive of Mell(A) then follows from the cohesive of LevelE/R.
■

Lemma 4.4. The fucntor Mell(A) : CAlgcn → S is integrable

Proof. We need to prove that for R a local Noetherian E∞-ring which is complete with
respect to its maximal ideal m ⊂ π0R, then there is an equivalence

MapFun(CAlgcn,S)(SpétR
′,Mell(A))→ MapFun(CAlgcn,S)(SpfR

′,Mell(A)).
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We have the following diagram in Fun(CAlgcn,S),

Mell(A)
g //

f
%%KK

KKK
KKK

KK
Mell

h

��
∗

By [Lur18c, Remark 17.3.7.3], Mell(A) → ∗ is a integrable fucntor if and only if
f is integrable. Since we have Mell is integrable functor, h is a integrable morphism in
Fun(CAlgcn,S). And again by [Lur18c, Remark 17.3.7.3], f is integrable if and only if g
is integrable. So we only need to prove that g is a integrable morphism. But by [Lur18c,
Proposition 17.3.8.4] g is integrable if and only if each fiber of g is integrable, i.e., for
R ∈ CAlgcn and a point ηE ∈ Mell(R) which represents a spectral elliptic curve E, the
functor

fE : CAlgcnR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}

is integrable. But we have R′ 7→ Mell(A)(R′) ×Mell(R′) {ηE} ' Level(A, E ×R R′/R′) '
LevelE/R(R

′). The integrable of Mell(A) then follows from the integrable of LevelE/R.
■

Lemma 4.5. The functor Mell(A) : CAlgcn 7→ S admits a cotangent complex LMde
ell

, and
moreover LMde

ell
is connective and almost perfect.

Proof. We have a commutative diagram in CAlgcn → S,

Mell(A)
g //

f
%%KK

KKK
KKK

KK
Mell

h

��
∗

Since we have h is infitessimally coheisve and admits a connective cotangent complex, and
f,g is infitessimally cohesive. By [Lur18c, Proposition 17.3.9.1], to prove that f admits a
cotangent complex. We only need to prove g admits a relative cotangent complex. By
[Lur18c, Proposition 17.2.5.7], a morphism j : X → Y in Fun(CAlgcn,S) admits a relative
contangent complex if and only if, for any corepresentbale Y ′ = Map(R,−) : CAlgcn → S
and any natural transformation Y ′ → U , j′ in the following pullback diagram admit a
cotangent complex.

Y ′ ×Y X

j′

��

// X

j
��

Y ′ // Y

To prove thatMell(A)→Mell admits a cotangent a cotangent complex, we just need to
prove that for any R ∈ CAlgcn, and a spectral elliptic curve E which represents a natural
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transformations SpecR→Mell. The functor

CAlgR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}

admits a connective cotangent complex. But we have Mell(A)(R′) ×Mell(R′) {ηE} =

Level(E ×R R′) = LevelE/R(R
′). So the results of f : Mell(A) → ∗ admits a cotan-

gent complex follows from LevelE/R admits a cotangent complex. And the properties of
connective and almost perfect also follows from the property of the cotangent complex of
LevelE/R.

■

Lemma 4.6. The functor Mell(A) : CAlgcn 7→ S is locally almost of finite presentation.

Proof. Consider the functor Mell(A) → ∗, it is infitesimally cohesive and admits a
cotangent complex which is almost perfect, so by [Lur18c, 17.4.2.2], it is locally almost of
finite presentation. So Mell(A) is locally almost of finite presentation, since ∗ is a final
object of Fun(CAlgcn,S).

■

Theorem 4.7. The functor

Mell(A) : CAlg→ S
R 7−→Mell(A)(R) = Ell(A)(R)≃

is representable by a spectral Deligne-Mumford stack.

Proof. By the spectral Artin representability theorem, we need to prove that the functor
Mell(A) satisfying the following condition

1. The space Mell(A)(R0) is n-truncated for every discrete commutative ring R0.

2. Mell(A) is a sheaf for the étale topology.

3. Mell(A) is a nilcomplete, infinitesimally cohesive, and integrable functor.

4. Mell(A) admits a cotangent complex LMell(A) which is connective.

5. Mell(A) is locally almost of finite presentation.

But these follows form the above series of lemmas.
■

36



4.2 Higher Categorical Lubin-Tate Towers
We recall that for a height h p-divisible group G0 over a commutative ring R0 and

suppose A ∈ CAlgadcpl. We recall that a deformation of G0 over R is a spectral p-divisible
group over R together with an equivalence class of G0-tagging of G. We let Level(k,G/R)

denote the space of derived (Z/pkZ)h-level structure of a height h spectral p-divisible
group. We consider the following functor

Mk : CAlgadcpl → S
R→ DefLevel(G0, R, k)

where DefLevel(G0, R, k) is the ∞-category whose objects are triples (G, ρ, η)

1. G is a spectral p-divisible group over R.

2. ρ is an equivalence of G0 taggings of R.

3. η : D → G is a derived (Z/pkZ)h-level structure of G.

Theorem 4.8. The functor Mk is corepresentable by a E∞-ring which is finite over the
unoriented spectral deformation ring of G0.

Proof. We let Euniv/R
un
G0

denote the universal spectral deformation of G0/R0. Suppose
that G is a spectral deformation G0 to R, we get a map of E∞-rings Run

G0
→ R, and an

equivalence Euniv ×Run
G0

R ' G of spectral p-divisible groups. By the universal objects of
level structures. We have the following equivalence

Level(k,G/R) ' Level(k,Euniv ×Run
G0

R) ' MapCAlgad,cpl
Run
G0

(PEuniv/Run
G0
, R),

where PEuniv/Run
G0

is the universal object of derived level structure functor associated with
the p-divisible group Euniv/R

un
G0

.
Then we consider the following moduli problem

CAlgadcpl → S, R 7→ MapCAlgad,cplR0

(PEuniv/Run
G0
, R).

For R ∈ CAlgad,cplR0
, MapCAlgad,cplR0

(PEuniv/Run
G0
, R) can viewed the ∞-categories of pairs

(α, f), where
α : Run

G0
→ R

is the classified map of a spectral p-divisible group G, which is a deformation of G0, that
is α = (G, ρ), and f ∈ MapCAlgad,cpl

Run
G0

(PEuniv/Run
G0
, R) = Level(k,Euniv ×Run

G0
R) is a derived

level structure of G/R. So we get MapCAlgad,cplR0

(PEuniv/Run
G0
, R) is just the ∞-category of
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pairs (G, ρ, η). By lemma 3.16, PEuniv/Run
G0

is finite over Run
G0

. So we have PEuniv/Run
G0

is the
desired spectrum.

■
Although we get spectra come from a conceptual derived moduli problems, but these

spectra may be complicated, since we didn’t know the homotopy groups. In algebraic
topology, orientation of E∞-spectra make E2 page of Atiyah-Hirzebruch spectral sequences
degenerating, and give us the information of homotopy groups.

Let G0 be a height h p-divisible group over RG0 . We consider the following functor

Mor
k : CAlgadcpl → S

R→ DefLevelor(G0, R, k)

where DefLevelor(G0, R, k) is the space of four tuples (G, ρ, e, η), where

1. G is a spectral p-divisible over R.

2. ρ is an equivalence class of G0 taggings of R.

3. e : S2 → Ω∞G◦(R) is an orientation of the G◦, where G◦ is the identity component
of G.

4. η : D → G is a derived (Z/pkZ)h-level structure of G.

Theorem 4.9. The functor Mor
k : CAlgadcpl → S is corepresentable by an E∞-ring JKk,

which is finite over the orientated deformations ring Ror
G0

.

Proof. Let Defor(G0, R) denote the ∞-groupoid of triples (G, ρ, e), where G is a p-
divisible of over R, ρ is an equivalence class of G0-taggings of R, and e is an orientation
of the identity conpoment of G. By [Lur18b, Theorem 6.0.3, Remark 6.0.7], the functor

Mor : CAlgadcpl → S
R→ Defor(G0, R)

is corepresnetable by the orientated deformation ring Ror
G0

, that is we have an equivalence
of spaces

MapCAlgadcpl
(Ror

G0
, R) ' Defor(G0, R).

Let Eor
univ be the associated universal orientation deformation of G0 to Ror

G0
, then it is obvi-

ous that JLk = PEor
univ/R

or
G0

, the universal object of derived level structures of Eor
univ/R

or
G0

,
is the desired spectrum similar to th unorientated case.

■
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We call this spectrum JLk the Jacquet-Langlands spectrum. It is easy to see that
this JLk admit an action of GLh(Z/pkZ)×Aut(G0). And when k varies, we have a tower

SpétJLk

��
SpétJLk−1

��
· · ·

��
SpétJL0.

We call this tower higher categorical Lubin-Tate tower.
Let E be a local field, G be a reductive group over E. The classical local Langlands

correspondence predict that for any irreducible smooth representation π of G(E), we can
naturally associate an L-parameter

ϕE : WE → Ĝ(C).

The geometric Langlands correspondence actually aim to construct an equivalence of
categories

D(QCoh(LocSysG∨(X)) ' D(D(BunG))

from the derived category of quasi-coherent sheaves on G∨ local systems on X and the
derived categories of D-modules on the moduli stack of G-bundles over X [BD91]. Due
to the work of Fargues-Scholze [FS21], the arithmetic local Langlands correspondence can
also be some kinds of geometric Langlands correspondence, but in the perfectoid world.

In the classical arithmetic geometry, the Lubin-Tate tower can be used to realize
the Jacquet-Langlands correspondence [HT01]. Is there a topological realization of the
Jacquet-Langlands correspondence? Actually, in a recent paper [SS23], they already re-
alized a version of topological Jacquet-Langlands correspondence. But their method is
based on the Goerss-Hopkins-Miller-Lurie sheaf. They actually consider the degenerate
level structures such that representing object is étale over representing object of universal
deformations.

We hope our higher categorical analogues of Lubin-Tate towers can also establish
a topological version of the classical Langlands correspondence, which means that we
construct representations on the category of spectra. By the construction of Jacquet-
Langlands spectra above, Let G be a formal group over a field of characteristic p, JL be
its ℓ-adic complete Jacquet-Langlands spectrum. Let X be a spectrum with an action of
Aut(Gh). We have the following brave conjecture.
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Conjecture 4.10. The function spectrum F (X,JL) admits an action of GLh(Zp) and
all its homotopy groups are Zl-modules.

4.3 Topological Lifts of Power Operation Rings
We recall the deformation of formal groups. Let G0 be a formal group over a perfect

field k such that chark = p , a deformation of G0 to R is a triple (G, i,Φ) satisfying

• G is a formal group over R,

• There is a map i : k → R/m

• There is an isomorphism Φ : π∗G ∼= i∗G0 of formal groups over R/m.

Suppose that we have a complete local ring R whose residue filed has characteristic
p. Let ϕ : R → R, x 7→ xp be the Frobenius map. For each formal group G over R,
the Frobenius isogeny Frob : G → ϕ∗G is the homomorphism of formal group over R

induced by the relative Frobenius map on rings. We write Frobr : G → (ϕr)∗G which is
the composition ϕ∗(Frobr−1) ◦ Frob

Let G0 be a formal group over k, (G, i, α) and (G′, i′, α′) be two deformations of G0

to R. A deformation of Frobr is a homomorphism f : G → G′ of formal groups over R

which satisfying

1. i ◦ ϕr = i′ and i∗(ϕr)∗G0 = (i′)∗G0.

k i′ //

ϕr

��

R/m

k

i
=={{{{{{{{

2. the square
i∗G0

i∗(Frobr)//

α

��

i∗(ϕr)∗G0

α′

��
π∗G

π∗(f) // π∗G′

of homomorphisms of formal groups over R/m commutes.

We let DefR denote the category whose objects are deformations fo G0 to R, and
whose morphisms are deformation of Frobr for some r ≥ 0. We will say that a morphism
in DefR has height r, if it is a deformation of Frobr, and the we denote the corresponding
subcategory as SubrR. Let G be deformation of G0 to R, then it can be proved that the
assignment f → Kerf is a one-to-one correspondence between the morphisms in Subr

R

with source G and the finite subgroup of G which have rank pr.
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Theorem 4.11. [Str97] Let G0/k be a height n formal group over a perfect field k.
For each r > 0, there exists a complete local ring Ar which carries a universal height r
morphism f r

univ : (Gs, is, αs) 7→ (Gt, it, αt) ∈ Subr(Ar). That is the operation f r
univ →

g∗(f r
univ) define a bijective relation from the set of local homomorphism g : Ar → R to the

set Subr
R. Furthermore, we have:

1. A0 ≈ W (k)[[v1, · · · , vn−1]] is the Lubin-Tate ring.

2. There is a map s : A0 → Ar which classifies the source of the universal height r

map, i.e. Gs = s∗GE, where GE = Guniv/A0 be the universal deformation of G0,
and Ar is finite and free as an A0 module.

3. There is a map t : A0 → Ar which classifies the target of the universal height r map,
i.e. Gt = t∗GE.

4. And there is a bijection {g : Ar → R} → Subr(R) given by g → g∗(f r
univ)(g

∗Gs →
g∗Gt).

We know that those rings Ar, r ≥ 0 have topological meansings.

Theorem 4.12. [Str98] The ring Ar in the universal deformation of Frobenuis is isomor-
phic to E0(BΣpr)/I, i.e,

Ar
∼= E0(BΣpr)/I

where I is transfer ideal.

The collections {Ar} have the structures of graded coalgerbas, for s = sk, t = tk :

A0 → Ak, which is induced by E0 cohomology on BΣ→ ∗, we have

µ = muk,l : Ak+l : Ak+l → Ak
s⊗A0

tAl

which classifying the source,target, and composite of morphisms. So for the power oper-
ation Rk(X)→ Rk(X × BΣm). For x = ∗, we have

π0R→ E0(BΣpr)/I ⊗ π0R = A[r]⊗ π0R

This make π0R becomes a Γ-module, where Γ are duals of A[r].
For more details about power operation in Morava E-theory, one can see [Rez06,

Rez09] and [Rez13]. Direct computations are in [Rez08] for height 2 at the prime 2,
[Zhu14] for height 2 at prime 3, [Zhu19] for height 2 at all primes. Cases of height > 2 is
still lack of computations.

Because we have the assignment f → Kerf is a one-to-one correspondence between
the morphisms in Subr

R with source G and the finite subgroup of G which have rank pr.
So it is easy to see that Ar corepresent the following moduli problem
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M0,r : CAlg♡k → S
R→ Def(G0, R, pr)

where Def(G0, R, pr) consists of pairs (G,H) where G is an defomration G0 to R, and H

is a rank pr subgroup of G.

Proposition 4.13. For every integer r ≥ 1, there exists a E∞-ring En,r, such that
π0En,r = Ar.

Proof. For the formal group G0 over a field k of characteristic p. We just consider the
functor CAlgadcpl → S by sending an E∞-ring R to quadruples (G, ρ, e, η), where (G, ρ)

is spectral deformation of G0 to R. e is an orientation of G◦, the identity component
G, and η ∈ Level0(k,G/R) is a derived level structure. Using the same argument in
full level structure and the fact Level0,kG/R is representable, see Remark 3.18. We get this
proposition.

■
Remark 4.14 Although, we obtain spectra whose π0 are the power operation rings of
Morava E-theories. But we don’t know higher homotopy groups of these spectra, since
these spectra are not even periodic and they are not étale over Morava E-theories. We
will continue to study such spectra in the future.
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