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Abstract

We study the representability of relative Cartier divisor in the context of spec-
tral algebraic geometry. Base on this, we define the derived level structures in
spectral algebraic geometry. We prove the relative representability of derived level
structures. Combining derived level structures and derived deformations developed

by Lurie, we construct the non-even periodic higher categorical lifts of Lubin-Tate

towers.
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1 Introduction

The stable homotopy category is a central topic in algebraic topology. Structured ring

spectra are the most common examples studied, such as H, spectra and E,, spectra. In
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[Lur09b] and [Lurl8b], Lurie uses spectral algebraic methods give a proof of the Goerss-
Hopkins-Miller theorem for topological modular forms. Except for the application of
elliptic cohomology, Lurie also proved the E, structures of Morava E-theories [Lurl8b],
which use the spectral version of deformation theory of certain p-divisible groups. The
earliest proof of E, structures of Morava E-theories is due to Goerss, Hopkins and Miller
[GHO4]. They turned the problem into a moduli problem and developed an obstruction
theory. One can finish the proof by computing the Andre-Quillen groups. Comparing with
their method, Lurie’s proof is more conceptual. There are more and more applications of
spectral algebraic geometry in algebraic topology. Such as topological automorphic forms
[BL10], Morava E-theories over any Fj-algebra [Lurl8b], not only just for a perfect field
k. The construction of equivariant topological modular forms [GM20], elliptic Hochschild
homology [ST23] and more.

On the other hand, moduli problems concerning deformations of formal groups with
level structures are also representable, and moduli spaces of different levels form a Lubin-
Tate tower [RZ96, FGLO08]. We know that the universal objects of deformations of formal
groups have higher algebraic analogues which are the Morava E-theories. A natural
question is what are higher categorical analogues of moduli problems of deformations
with level structures? And can we find higher categorical analogues of Lubin-Tate towers.
Although the E-structure of topological modular forms with level structures can be
obtained from [HL16], we still hope that there exists a derived stack of spectral elliptic
curves with level structures which provide us with a more moduli interpretation. Except
this, in the computation of unstable homotopy groups of sphere, after applying the EHP
spectral sequences and the Bousfield-Kuhn functor, we observe that some terms on the
Es-page also arise from the universal deformation of isogenies of formal groups. They
are computed by the Morava E-theories on the classifying spaces of symmetric groups
[Str97, Str98]. They can be viewed as sheaves on the Lubin-Tate tower. We hope to
provide a more conceptual perspective on this fact within the higher categorical Lubin-
Tate tower.

In this paper, we give an attempt to address this problem by studying specific moduli
problems in spectral algebraic geometry. The main ingredient of our work is the derived
version of Artin’s representability theorem established in [Lur04, TTV08]. We will use
the spectral algebraic geometry version [Lurl8c| in this paper. We study relative Cartier
divisors in the context of spectral algebraic geometry. By imposing certain conditions, we
define derived level structures of certain geometric objects in spectral algebraic geometry.
Using Artin representability theorem, we prove some representable results of moduli prob-
lems that arise from our derived level structures. We give some examples of applications
involving derived level structures. We consider the moduli problem of spectral defor-

mations with derived level structures of p-divisible groups. We prove that these moduli



problems are representable by certain formal affine spectral Deligne-Mumford stacks and

the corresponding spectra can provide us many interesting general cohomology theories.

Outline

We work on spectral algebraic geometry in this paper. In the second section, we define
derived isogenies and prove that the kernel of a derived isogeny in some cases have the
same phenomenon as in the classical case. This provides evidence that our derived versions
of level structures must induce classical level structures. For representability reasons, we
use moduli associated with sheaves to detect higher homotopy of derived versions of
level structures. We define relative Cartier divisors in the context of spectral algebraic
geometry. For a spectral Deligne-Mumford stack X over a spectral Deligne-Mumford
stack S, a relative Cartier divisor is a morphism D — S of spectral Deligne-Mumford
stacks such that D — X is a closed immersion, the ideal sheaf of D is a line bundle over
X, and the morphism D — §'is flat, proper and locally almost of finite presentation. We
use Lurie’s representability theorem prove that the relative Cartier divisor is representable
in certain cases. The main part of our proof involves computing of cotangent complex.
Our first main result is:

Theorem A. (Theorem 2.17) Suppose that E is a spectral algebraic space over a
connective E-ring R, such that £ — R is flat, proper, locally almost of finite presenta-

tion, geometrically reduced, and geometrically connected. Then the functor

R+ CDiv(Eg /R

is representable by a spectral algebraic space which is locally almost of finite presentation
over R.

In the third section, we define derived level structures of spectral elliptic curves.
Roughly speaking, for a finite abstract abelian group A, usually equals Z/NZ, Z/NZ x
Z/NZ, a derived A-level structure of a spectral elliptic curve E over an E.-ring R is
just a relative Cartier divisor D — FE satisfying its restriction to the heart comes from
an ordinary A-level structure. We let Level(A, E/R) denote the space derived A-level
structures of a spectral elliptic curve £/R. We prove that moduli problems associated
with derived level structures are representable. Our second main result is:

Theorem B. (Theorem 3.5) Suppose that E is a spectral elliptic curve over a

connective E,.-ring R, then the functor
Levelg/r : CAlgy — S
R' — Level(A, Er /R')
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is representable by an affine spectral Deligne-Mumford stack which is locally almost of
finite presentation over the E -ring R.

In classical algebraic geometry, except one-dimensional group curves, we also care
level structures of p-divisible groups, it comes the full sections of commutative finite flat
group schemes. In section three, we consider derived level structures of spectral p-divisible
groups. Let Level(k, Ggr/R) denote the space of derived (Z/p*Z)"-level structures of a
height h spectral p-divisible group G/R. Out third main result is:

Theorem C. (Theorem 3.16) Suppose G is a spectral p-divisible group of height h

over a connective E-ring R. Then the functor
Levelg/R : CAlgy — S; R — Level(k,Gr//R')

is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPe, IR
In the last section, we give some applications of derived level structures. We first
prove that the moduli problem of spectral elliptic curves with derived A-level structures
is representable by a spectral Deligne-Mumford stack. Our fourth main result is:
Theorem D. (Theorem 4.7) Let Ell(A)(R) denote the space of spectral elliptic

curves with derived A-level structures over the E.-ring R. The functor

Ma(A) : CAlg™ — S
R+— Ma(A)(R) = Ell(A)(R)

is representable by a spectral Deligne-Mumford stack and moreover this stack is locally
almost of finite presentation over the sphere spectrum S.

In [Lurl8b], Lurie consider the spectral deformations of classical p-divisible groups.
As we have the concept of derived level structures, it is natural to consider the moduli of
spectral deformations with derived level structures of certain p-divisible groups. Suppose
Gy is a p-divisible group of height h over a perfect Fj,-algebra R;. We consider the
following functor

M CAlg™ - S

cpl

R — DefLevel” (Gy, R, k)

where DefLevel” (G, R, k) is the co-category spanned by those quaternions (G, p, e, n)
1. G is a spectral p-divisible group over R.
2. pis a equivalence class of G-taggings of R.

3. e is an orientation of the identity component of G.



4. n: D — G is a derived (Z/p*7Z)"-level structure of G/R.

Our last main result is:

Theorem E. (Theorem 4.9) The functor M is corepresentable by an E.-ring
J Ly, where J L is a finite Rg -algebra, Rg is the orientation deformation ring of Gy
defined in [Lurl8b].

We will give another example of spectra constructed by considering moduli of spectral
deformations with p power order subgroups level structures, which can be viewed as

topological realizations of universal objects of Strickland’s deformations of Frobenius.

Notations

1. CAlg denote the oo-category of E.-rings, and CAlg™ denote the oo-category of

connective F-rings.
2. S denote the oco-category of spaces (co-groupoids).

3. For a spectral Deligne-Mumford stack X = (X, Ox), we let 7, X = (X, 7<,0Ox)

denote its n-truncation.

4. For a spectral Deligne-Mumford stack X = (X,0y), we let XV = (XY, 7<cOx)

denote its underlying ordinary Deligne-Mumford stack.

5. By a spectral Deligne-Mumford stack X over R, we mean a map of spectral Deligne-
Mumford stacks X — SpétR.

6. X be a spectral Deligne-Mumford stack over R, let S be an R-algebra. We some
times let X x g S denote the product X Xgper SpétsS.

7. Mgy denote the spectral Deligne-Mumford stack of spectral elliptic curves, which
is defined in [Lurl8a).

8. M¢<, denote the classical Deligne-Mumford stack of classical elliptic curves.
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for helpful discussions about ideas in this paper.



2 Relative Cartier Divisors

2.1 Isogenies of Spectral Elliptic Curves

Our main innovation is derived level structures defined in this chapter. The start
is derived version of isogenies. We prove that the kernel of a derived isogeny in some
cases have the same phenomenon as the classical case. This gives us an evidence that
over derived version of level structures must induce classical level structures. In section 2,
we define relative Cartier divisors in the setting of spectral algebraic geometry. We then
use Lurie’s representability theorem prove that functors associated with relative Cartier
divisors are representable by certain spectral Deligne-Mumford stacks. In the third and
fourth section, we study derived level structures of spectral elliptic curves and spectral
p-divisible groups. The main content of last two sections are the proof of representability
of derived level structures.

To define derived level structures, the first question is what the higher categorical
analogue of finite abelian groups are? We first recall some finiteness conditions in E..-rings
context.

Let A be an E,-ring, M be an A-module. We say M is

1. perfect, if it is an compact object of LModg.

2. almost perfect, if there exits a integer k such that M € (LModg)>; and M is an
almost perfect object of (LModg)>.

3. perfect to order n if for every filtered diagram {N,} in (LMod)<o, the canonical
map limExt’ (M, N,) — Ext’y(M,limN,) is injective for i = n and bijective for
—a —Q

1 <n.
4. finitely n-presented if M is n-truncated and perfect to order (n+1).
5. finite generated, if it is perfect to order 0.

And when we consider the finite condition on algebra. We say a morphism ¢ : A — B

of connective E-rings is

free

1. finite presentation if B belongs to the smallest full subcategory of CAlg’ ™ and is

stable under finite colimits.
2. locally of finite presentation if B is a compact object of CAlg,.

3. almost of finite presentation if A is an almost compact object of CAlg,, that is,

T<pB is a compact object of 7<,,CAlg, for all n > 0.



4. finite generation to order n if the following conditions holds:

Let {C,} be a filtered diagram of connective E..,-rings over A having colimit C.
Assume that each C, is n-truncated and that each of the transition maps w,C, —

m,Cp is a monomorphism. Then the canonical map
li;n Mapgayg, (B, Ca) = Mapgay, (B, C)

is a homotopy equivalence.
5. finite type if it is of finite generation to order 0.

6. finite if B is a finitely generated as an A-module.

Proposition 2.1. [Lurl8ec, Proposition 2.7.2.1, Proposition 4.1.1.3] Let ¢ : A — B be a

morphism of connective E-rings.. Then The following conditions are equivalent.
1. ¢ is of finite (finite type).
2. The commutative ring moB is finite (finite type) over myA.

Definition 2.2 [Lurl8c, Definition 4.2.0.1] Let f : X — Y be a morphism of spectral
Deligne-Mumford Stack. We say that f is locally of finite type, (locally of finite genrera-
tion to order n, locally almost of finite presentation, locally of finite presentation) if the

following conditions is satisfied: for every commutative diagram

SpétB —= X

)

SpétA ——=Y

where the horizontal morphisms are étale, the E.-ring B is finite type (finite generation

to order n, almost of finite presentation, locally of finite presentation) over A.
Definition 2.3 [Lurl8c, Definition 5.2.0.1] Let f : (X, Ox) — (Y, Oy) be a morphism of

spectral Deligne-Mumford stacks, we say f is finite, if the following conditions hold

1. {is affine.

2. The push-forward is f,Ox is perfect to order 0 as a Oy module.

Remark 2.4 By the [Lurl8c, Example 4.2.0.2], A morphism f : X — Y of spectral
Deligne-Mumford stack is locally of finite type if the underlying map of spectral Deligne-
Mumford stacks is locally of finite type in the sense of ordinary algebraic geometry.

And by [Lurl8c, 5.2.0.2], A morphism of f: X — Y is finite if the underlying map
2 XY — YV is finite. If X and Y are spectral algebraic spaces, then f is finite is

equivalent to fv is finite is the sense of ordinary algebraic geometry.
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We recall that a morphism f : X — Y of spectral Deligne-Mumford stacks is sur-
jective if for every field k and any map Spétk — Y, the fiber product Spétk xy X is
nonempty [Lurl8c, Definition 3.5.5.5].

Definition 2.5 Assume that we have a connective E., ring R. Let f : X — Y be a
morphism of spectral abelian varieties over R, we say f is an isogeny if it is flat, finite

and surjective.

Lemma 2.6. Let f : X — Y be a morphism of spectral abelian varieties, then f¥ : XV —

Y is an isogeny in the classical sense.

Proof. In classical abelian varieties, f¥ is an isogeny means f¥ is surjective and ker f¥
is finite. But it is equivalent to fV is finite, flat and surjective [Mil86, Proposition 7.1].
And it is easy to see that fv is finite, flat. We only need to prove that f% is surjective.
For every morphism |Speck| — |Y?|, this correspond to a morphism Spétk — Y9,
by the inclusion-truncation adjunction [Lurl8c, Proposition 1.4.6.3], this corresponds to

a morphism Spétk — Y. By the definition of surjective, we get a commutative diagram

Spétk! — = X

|

Spétk ——=Y

The upper horizontal morphism corresponds to a morphism Spétk’ — X by inclusion-
truncation adjunction. On the underlying topological space level, this corresponds to a
point [Spétk| — |Y'¥|. Tt is clear that this point in |[Y¥| is a preimage of [Spétk| in X°.
So f9 is surjective.

|

Lemma 2.7. Let f : X — Y be an isogeny of spectral elliptic curves over a connective E-
ring R, then fib(f) exists and is a finite and flat nonconnective spectral Deligne-Mumford

stack over R.

Proof. By [Lurl8c, Proposition 1.14.1.1], the finite limits of nonconnective spectral

Deligne-Mumford stacks exists, so we can define fib(f). We consider the following diagram

fib(f) — X
J{f’ /
=Y

\\A

SpétR



where the square is a pullback diagram. We find that fib(f) is over SpétR. By [Lurl8c,
Remark 2.8.2.6], f’ : fib(f) — x* is flat because it is a pull-back of a flat morphism.
Obviously i : x — SpétR is flat, so by [Lurl8c, Example 2.8.3.12] ( flat morphism is local
on the source for the flat topology), i o f": fib(f) — SpétR is flat.

Next, we show ker f is finite over R. Since *, X and Y are all spectral algebraic
spaces, so we have fibf is also a spectral algebraic space. And SpétR is an algebraic
space [Lurl8c, Example 1.6.8.2]. By the above remark 2.4, we only need to prove that
the underlying morphism is finite. The truncation functor is a right adjoint , so preserve

limits. So we get a pull-back diagram

fib(f)% — X
I
* Yy©

So we are reduced to prove that for an isogeny f¥ : X¥ — Y of ordinary abelian
varieties over a commutative ring R. ker f is finite over R. But this is true in classical
algebraic geometry [Mil86, Proposition 7.1].

|

Lemma 2.8. Let fy : E — E be an isogeny of spectral elliptic curves over R, such that
the underline map of ordinary elliptic curve is the multiplication N map, N : EY — EV.
Then fibf is finite locally free of rank N in the sense of [Luri8c, Definition 5.2.3.1]. And

moreover if N is invertible in moR, then fibf is a locally constant étale sheaf.

Proof. By [KM85, Theorem 2.3.1], we know that N : EY — E is locally free of rank
N in the classical sense. When N is invertible in my R, then ker N is locally constant tale
sheaf. fib(fy) is a spectral algebraic space which is finite and flat and its underlying map
fib(fx)¥ = ker N is locally free of rank N. We need to prove that fibfy — SpétR is locally
free of rank N in spectral algebraic geometry. But fibfy is finite and flat, so is affine. We
are reduce to prove this in local affine, i.e., we need ot prove that fu|spers : SpétS — SpétR
is locally free, for SpétS is an affine substack of fibfy. This is equivalent to prove that
R — S is locally free of rank N in the sense of [Lurl8c, Definition 2.9.2.1]. So we need

to prove

1. S is locally free of finite rank over R.(By [Lurl7, Proposition 7.2.4.20], this is equiv-
alent to say S is a flat and almost perfect R-module.)
2. For every E.-ring maps R — k, the vector space mo(M ®p k) is a N-dimensional

k-vector space.

For (1), we know that 7S is projective myR-module, and S is a flat R-module, so

by [Lur09a, Proposition 7.2.2.18], S is a projective R-module. And since 7S is a finitely
9



generate R-module, so by [Lurl7, Corollary 7.2.2.9], S is a retract of a finitely generated
free R-module M, so is locally free of finite rank.

For (2), mo(k ®g M) since R and M are connective, by [Lurl7, Corollary 7.2.1.23],
we get mo(k @r M) ~ k Q,,g moM is a rank N k-vector space (moM is rank N free moR
module).

We next show that if N is invertible in myR, then fibf is a locally constant sheaf. By
the above discussion, fibf is a spectral Deligne-Mumford stack, so the associated functor
points fibf : CAlg, — S is nilcomplete and locally of almost finite presentation. By
[KM85, Theorem 2.3.1], fibf| Al is a locally constant sheaf, the desired results follows
form the following lemma.

Lemma 2.9. Let F € Shvét(CAIg?), and is nilcomplete, locally of almost finite presen-
tation and F\(cmgg})@ is the associated sheaf of constant presheaf valued on A. Then F is

a homotopy locally constant sheaf (i.e., sheafification of a homotopy constant presheaf).

Proof. We choose a tale cover U? of myR, such that F g0 is a constant sheaf for each
i. By [Lurl7, Theorem 7.5.1.11], this corresponds to an tale cover U; — R such that

moU; = U?. We consider the following diagram

TS()R E—— TS()U

L

7'§,1R4> TgnU

which is push-out diagram, since U; is an étale R algebra. This is a colimit diagram in

T<n,CAlgp. F is a sheaf of locally of almost finite prsentation, so we get push-out diagram

F(1<oR) — F(1<0U;)

| |

F(T<nR) — F(1<nUi)

For each 7, we have such diagram. Without loss of generality, we can assume each U;
is connective. So F(7<oU;) are always same for all i. That means we have F(7<,U;) are
all equivalence. But we have F is nicomplete, this means F(U;) ~ colimF(7<,U;). So we
get all F(U;) are homotopy equivalence.

[
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2.2 Relative Cartier Divisors

In the subsection, we will define the relative Cartier divisor in the context of Spectral
Algebraic Geometry. And we use Lurie’s spectral Artin’s representability theorem to
prove that relative Cartier divisor is representable in some good cases. We first recall the

following spectral Artin’s representability theorem.

Theorem 2.10. [Luri8c, Theroem 18.58.0.1] Let X : CAlg™ — S be a functor, if we have
a natural transformation f : X — SpecR, where R is a Noetherian E.-ring and myR is
a Grothendieck ring. For n > 0, X is representable by a spectral Deligne-Mumford stack

which is locally almost of finite presentation over R if and only if the following conditions
are satisfied:

1. For every discrete commutative ring Ry, the space X (Ry) is n-truncated.
2. The functor X is a sheaf for the étale topology.

3. The functor X is nilcomplete, infinitesimally cohesive, and integrable.

4. The functor X admits a connective cotangent complex Lx.

5. The natural transformation f is locally almost of finite presentation.

For a locally spectrally topoi X = (X, 0,), we can consider its functor of points

hx : 0oTopSa, = S, Y — Map ropiss, (Y, X)
By [Lurl8c, Remark 3.1.1.2], the closed immersion of locally spectrally ringed topos f :
X = (X,0x) =Y = (Y, 0y) corresponds to morphism of sheaves of connective E,-rings
Ox — f.Oy over X such that 10Ox — 7o f.Oy is surjective. We consider the the fiber
of this map fibf. For a closed immersion f : D — X of spectral Deligne-Mumford stack,
we let I(D) denote fib(f), called the ideal sheaf of D.
To prove the relative representability, we need the representability of the Picard

functor. If we have a map f : X — SpétR of spectral Deligne-Mumford stack, we can
define a functor

Picxr : CAlgy — S, R — Pic(SpétR’ xsper X)

If f admits a section = : Spét R — X then there exists a natural transformation of functors

Pic(X/R) = Picg/r. We let
Pickp: CAlgg — S

denote the fiber of this map.
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Theorem 2.11. [Luri8c, Theorem 19.2.0.5] Let X be a map spectral algebraic spaces
which is flat, proper, locally almost of finite presentation, geometrically reduced, and
geometrically connected over an Eo.-ring R. And suppose that x : SpétR — X is a
section, the functor @z’cﬁ’(/R is representable by a spectral algebraic space which is locally

of finite presentation over R.

In the classical case, relative Cartier divisors schemes are open subschemes of Hilbert
schemes [Kol13]. But in the derived case, the Hilbert functor is representable by a spectral
algebraic space [Lur04, Theorem 8.3.3], it is hard to say relation to say the relation between

them. We will directly study relative Cartier divisors in derived world.

Definition 2.12 Suppose that X is a spectral Deligne-Mumford stack over a spectral
Deligne-Mumford stack S. We let CDiv(X/S) denote the co-category of closed immersions
D — X, such that D is flat, proper, locally almost of finite presentation over S and the

associated ideal sheaf of D is locally free of rank one over X.

Remark 2.13 It is easy to say that for any spectral Deligne-Mumford stack X over S,
CDiv(X/S) is a kan complex, since all objects are closed immersions of X, let D — D’

be morphism, then we have a diagram

!

NS

X

D D’

by the definition of closed immersions, they all equivalent to the same substack of X, so

f is a equivalence.

Lemma 2.14. Let X/S be a spectral Deligne-Mumford stack, and T — S be a map of
spectral Deligne-Mumford stacks. If we have a relative Cartier divisor i : D — X, then

Dr is a relative Cartier divisor of Xr.

Proof. This is easy to see, we just notice that Dr is still closed immersion of X7 [Lurl8c,
Corollary 3.1.2.3]. And after base change, Dr is flat, proper, locally almost of finite
presentation over 7. The only thing we need to worry is that whether I(Dr) is a line

bundle over X7 But this is also true. Since we have a fiber sequence
I (D) — 0O X — OD

after applying the morphism f* : Modo, — Modo,_, due to the flatness of D. We get
fiber sequence
f*I(D)) = Ox, = Op,

So we get I(Dr) is just f*I(D), so is invertible.
12



|
By the construction of relative Cartier divisors, suppose that X is a spectral Deligne-
Mumford stack over an affine spectral Deligne-Mumford stack S = SpétR. We then have

a functor

CDiVX/R : CAIg}i—? — S
R — CDIV(ER//R/)

Our main target in this section is to prove this functor is representable when E/R is a
spectral algebraic space satisfying certain conditions. Before we start the prove of repre-
senability of relative Cartier divisor, we need some preparations for computing the cotan-
gent complex of a relative Cartier divisor functor. The main issiue is square extension.
We need following truth about pushout of two closed immersions.

By [Lurl8c, Theorem 16.2.0.1, Proposition 16.2.3.1], suppose we have a pushout

square of spectral Deligne-Mumford stacks:

Xo1 —— X,

P

Xl — Xa
such that i and j are closed immersions. Then the induced square of co-categories

QCOh(XOl) I — QCOh(Xo)

| T

QCoh(X,) = QCoh(X)

determines emdbedding 6 : QCoh(X) — QCoh(Xo) Xqcon(x,) QCoh(X;) and restricts to

an equivalence
QCoh(X)™ — QCoh(Xo)™ Xqcon(xo)e QCoh(Xp)™
Let F € QCoh(X), and set
Fo=j" € QCoh(Xy) JF; =1i"F € QCoh(X).

Then the quasi-coherent sheaf F is n-connective is equivalent Fy and F; are n-connective,
and this statement is also true for the condition, almost connective, Tor-amplitude < n

flat, perfect to order n, almost perfec, perfect, locally free of finite rank.

13



And by [Lurl8c, Theorem 16.3.0.1], we the have a pullback square

i |

SpDM/X1 e Sp]:)l\/.[/)(01

of oo-categories Let f : Y — X be a map of spectral Deligne-Mumford stacks.
Let Yo = Xoxx Y, Y] = Xy xx Y and let fy : Yy — Xp and f; : Y7 — X; be the
projections maps. Then we have [Lurl8c, Proposition 16.3.2.1] f is locally almost of
finite presentation if and only if both fy; and f; are locally almost of finite presentation.
And the statement is also trur for conditions: locally of finite generation to order n, locally
of finite presentation, étale, equivalence, open immersion, closed immersion, flat, affine,
separated and proper.

Let X = (X,0x) be a spectral Deligne-Mumford stack, and £ € QCoh(X)™ is a
quasi-coherent sheaf, and n € Der(Ox, 3XE), that is map 7 : Ox — Ox & XE. We let O%
denote the square-zero extension of Oy by £ determined by 7, then we have a pull-back

diagram

o Ox

L

OXHOX@E(S’

By [Lurl8c, Proposition 17.1.3.4], (X,0%) is a spectral Deligne-Mumford stack,
which we will denote it by X". In the case of = 0, we denote it by X¢ = (X, Ox ® &).
We then have a pullback square of spectral Deligne-Mumford stacks

XZSL)X

o

X —X"

such that f and g are closed immersions.

We have a pullback diagram

QCoh(X")2" —~ QCoh(X )

l !

QCoh(X ) — = QCoh(XEE)aen,

by [Lurl8c, Theorem 16.2.0.1, Proposition 16.2.3.1]. Taking n = 0 and passing ti homo-
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topy fiber over some F € QCoh(X)?™", we can get
QCoh(X )™ X qaon(x) {F} 2 Mapgeon(x) (F, B(€ @ F))

by [Lurl8c, Proposition 19.2.2.2].
Taking 7 = 0 and passing to the homotopy fibers over some Z € SpDM  y, we can

get classification of the first order deformations

SPDM, xe Xsppm, {2} = Mapqoon(x) (Lzyx, 2fE),

see details in [Lurl8c, Porposition 19.4.3.1].

Lemma 2.15. Let f : X — SpétR be a morphism of spectral Deligne-Mumford stacks.
For a connective R-module M, then the co-categories of Deigne-Mumford stacks X' with
a morphism X — Spét(R @ M) such that fitting into the following pull back diagram

X X'
SpétR — = SpétR @ M

is a Kan complex, which is canonically equivalent to the mapping space Mapqcon (Lx)y, X f* M),
and moreover if f is flat, proper and locally of almost finite presnetation, then any such

' X' — S[M] is flat, proper and locally almost of finite presentation.

Proof. We have a pullback square in E.-rings

Ro M R
J/ l(ld,o)
R R& XM,

this corresponds a pushout square of spectral Deligne-Mumford stacks

SpétR & XM SpétR
SpétR SpétR & M

such that SpétR & XM — SpétR are closed immersion. That makes SpétR & M be an
infinitesimal thickening of SpétR determined by R (id—’0>) RaXM.

The first part of this lemma is just the formula of first order deformations[Lurl8c,
Proposition 19.4.3.1], and the second part is properties of pushout of two closed immer-

sions [Lurl8c, Corollary 19.4.3.3].
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Lemma 2.16. Suppose that we are given a pushout diagram of spectral Deligne-Mumford
stacks o:
Xop — Xo

P

X1 4>X,

where i and j are closed immersions. Let f :' Y — X be a map of spectral Deligne-Mumford
stacks. Let Yo = Xoxx Y, Y, = Xy Xx Y and let fo: Yy — X and f, : Y7 — X1 be the
projections maps.

If both fo and fi are closed immersions and determine line bundles over Yy and Y7,

then f is a closed immersion and determines a line bundle.

Proof. The closed immersion part is just Lurie’s theorem. And for the line bundle part,
we notice that by [Lurl8c, Theorem 16.2.0.1, Proposition 16.2.3.1], f determine a sheaf
of locally free of finite rank. To prove it is a line bundle, we can do it locally. By [Lurl8c,
Theorem 16.2.0.2], for a pullback diagram

AHAQ

|

Al - A(]l

of F-rings such that mgAy — mpAg1 < meA; are surjective, then there is an equivalence
F : Mod}" — Modj! X Mods! Modf,. Actually this a symmetric monoidal equivalence.
Sice we have FI(M) = (A ®4 M, Agy ®4 M, Ay @4 M). They satisfying F(M @ N) =~
F(M) ® F(N). But by [Lurl8c, Propsition 2.9.4.2], line bundles of Ay, Ag; and A,
determines invertible objects of Mod}', Mod}' and Mod}', so determine a invertible
object of Mod%', hence a line bundle over A by [Lurl8c, Propsition 2.9.4.2].

[

Theorem 2.17. Let E/R be a spectral algebraic space which is flat, proper, locally al-
most of finite presentation, geometrically reduced, and geometrically connected. Then the

functor

CDiVE/R : CAlgR — S
R CDIV(ER//R,)

is representable by a spectral algebraic space which is locally almost of finite presentation

of R.
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Proof. We use Lurie’s spectral Artin’s represnetability theorem to prove this theorem.

1. For every discrete commutative Ry, the space CDivg, r(Rp) is O-truncated.

We just notice that CDivg/r(Ry), consists of closed immersions D — E xp Ry,
such that D is flat proper over Ry, so all D are discrete object, so CDivg,/g(Ry) is
1-truncated.

2. The functor CDivg/ g is a sheaf for the tale topology.

Let {R' — U;};er be an étale cover of R', and U, be the associate check simplicial
object. We need to prove that the map

CDiVE/R(R/> — llin CDIVE/R(U.>

is an equivalence. Unwinding the definitions, we only need to prove following general
result: for a spectral Deligne-Mumford stack X — S and we have a étale cover
T; — S, then

CDiv(X/S) — lign CDiv(X xgTs)

is a homotopy equivalence. But this obvious, since our conditions of relative Cartier

divisor is local for the étale topology.

3. The functor CDivg/g is nilcomplete.

This is equivalent to say that the canonical map
CD]VE/R(R/) — thDiVE/R(7'<nR/)
p— <

This can be deduced form the following results: for a flat, proper, locally almost of
finite presentation spectral spectral algebraic space X over a connective E . -ring S,

we have a equivalence
CDiv(X/SpétS) — HmCDiv(X Xgpers SpétT<y,S).
pi <

Let us prove this equivalence now. For a relative Cartier divisor D — X, we have

the following commutative diagram

D X 3péts SpétTSnS —D

|

X X SpétS SpétTSnS — X

| |

SpétT<, S SpétsS
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We then get a induce map D Xgpers SpétT<,S — X Xgpars SpétT<,S. It is easy to
prove that this map is a closed immersion [Lurl8c, Corollary 3.1.2.3], and D Xgpets
Spétt<, S — SpétS is flat, proper and locally almost of finite presentation, since
D Xgpers SpétT<p,S is the base change of D along Spétr<,S — SpétS, and the
associated ideal sheaf of D Xgpeg Spétr<, S is still a line bundle over X Xgpes
SpétT<,S. So D Xgpers SpétT<, S is a relative Cartier divisor of X Xgperg SpétT<y,S.
Thus we have define a functor

0 : CDIV(X/S) — {EﬂCDlV(X X 8péts SpétTSnS), D {D X Spéts SpétTSnS}

This functor is fully faithful, since we have equivalence SpDM ;g — liinSpDM J7enS
defined by X +— X Xgpers SpétT<,S [Lurl8c, Proposition 19.4.1.2]. To prove the
functor # is an equivalence, we need to show it is essentially surjective. Suppose
{D,} — X Xsgpers Spétr<,S is an object in liLnCDiV(X Xgpéts SPétT<,S). It is a
morphism in {EHSPDM/T@& by [Lurl8c, Proposition 19.4.1.2], there is a morphism
D — X in SpDM/S, satisfying D Xgpers Sp€tT<, S — X Xgpars SpétT<,S are just
D,, = X Xgpers SpétT<yS.

Next, we need to show that such D — X is relative Cartier divisor. The condi-
tion that D — S is flat, proper and locally almost of finite presentation follows
immediately from [Lurl8c, Proposition 19.4.2.1]. We need to prove that D — X
is a closed immersion and determine a line bundle over X. Without loss of gen-
erality, we may assume that X = SpétB is affine, so we have closed immersion
D Xgpers SpétT<,S — SpétB Xspars SpétT<, S =~ Spét(B ®g 7<,5), the second
equivalence comes from [Lurl8c, Proposition 1.4.11.1(3)]. And by [Lurl8c, The-
orem 3.1.2.1], D Xgpers Spétr<,S equals SpétB), for each n, such that my(B xg
T<nS) — mB,, is surjective. Since we have 7<,S — B), is flat, we get SpétB), =
SPELB,, | Xspétre, 18 SPEIT<nS = SPEt(B,, 1 Xr_, 15 T<nS) = Spétr<, B, ;. So we
get a spectrum B’ such that 7<, B’ o~ SpétB], = D Xgpes Spétr<,S. Consequently
D = SpétB’, and myB — moB’ is surjective, so D = SpétB’ — SpétB = X is a
closed immersion. To prove that the associated ideal sheaf of D is a line bundle, we

notice that there is a pullback diagram.

InHB XSTSnS

.

* —— [’ Xg T§n87

each [, is an invertible B X g 7<,,S = 7<,, B module. Passing to the inverse limit, we
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get

lim/l,, — B
1
* — B
Consequently, we have I(D) ~ lim/,. So by the nilcompleteness of Picard functor
(_

[Lurl8c, Corollary 19.2.4.6, Propostion 19.2.4.7], We get I is a invertible B-module.
So the associated ideal sheaf of D is a line bundle of X.

. The functor CDivg/p is cohesive.
This statement follows from Proposition 2.16 and [Lurl8c, Proposition 16.3.2.1].
. The functor CDivg/p is integrable. We need to prove that for R’ a local Noetherian

E,-ring which is complete with respect to its maximal ideal m C myR. Then the

inclusion functor induces a homotopy equivalence
Map g, catgen,s) (SPELR', CDivE r) — Mappuy,calgen s)(SPER’, CDiv)R).

But this follows from the following result: for a flat proper, locally almost of finite
presentation and separated spectral spectral algebraic space X over a connective

E-ring S, we have equivalence
CD]V(X/S) ~ CDIV(X X Spéts SpfS)

Let Hilb(X/S) denote the full subcategory of SpDM, y consists of those D — X,
such that D — X is a closed immersion and D — S is flat, proper and locally almost
of finite presentation. Then by the formal GAGA theorem [Lurl8c, Theorem 8.5.3.4]
and base change properties of flat, proper and locally almost of finite presentation,
we have Hilb(X/S) ~ Hilb(X Xgpes SpfS). To prove the equivalence of relative
Cartier divisors, we need to check that D — X associated a line bundle over X if
and only if D xgpesSpfS associated a line bundle over X xg,¢:sSpfS. We notice that
since X Xgpers SpES is flat over X, we have I(D Xgpers SptS) = I(f*D) ~ f*I(D)

D X 3péts SpfS ——D

| |

X Xgpers SpES J.x
By [Lurl8c, Proposition 19.2.4.7], we have an equivalence
QCOh(X/S>aperf,cn ~ QCOh(X XSpétS Spfs)aperf,cn
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By restricting to subcategories spanned by invertible object and using [Lurl8c,
Proposition 2.9.4.2], we get D associated a line bundle over X if and only if D Xgpes

SpfS associated a line bundle over X Xgpes SpES.

. CDivg/g is locally almost of finite presentation.

We need to prove that CDivg/g : CAlgp — S, R’ — CDiv(Er//R’) commutate with
filtered colimits when restrict to 7<,CAlgy. But we notice that CDiv(Eg /R') are

full categories of SpDM p_,_,p/, We consider the functor
+
R Varj, g
where Var;rER, _ g consists of the diagram

D —— FEp

N

Spét R’

such that D — R’ is flat, proper, and locally almost of finite presentation. Then
by [Lurl8c, Proposition 19.4.2.1]. This functor commutates with filtered colimits
when restrict to 7<,CAlg%'. Then we just need to prove that when {D; — E% }icr
are closed immersions and determine line bundles in {E%,}, then colimD; are closed
immersion of colimFE%, and determine line bundle in colimFE%,. But this fact follows
from the locally almost of finite presentationnes of Picard functor and properties of

closed immersions.

Consider the functor CDivg g — *, it is infitesimally cohesive and admits a cotan-
gent complex which is almost perfect, so by [Lurl8c, 17.4.2.2], it is locally almost
of finite presentation. So CDivg/p is locally almost of finite presentation, since *
is a final object of Fun(CAlg™,S).

. The functor CDivg/ g admits a complex L which is connective and almost perfect.

For a connective E,-ring S, and every n € CDivg/z(S), and a connective S-module

M. We have a pullback diagram

|
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Then we have a functor

F,:Mods =S, M w— F,(M)

We need to prove that this functor is corepresentable. 7 corresponds a morphism
D — E xp S, and E xg (S @® M) is a square zero extension of £ xg S. So by
the classification of first order deformation theory [Lurl8c, Propostion 19.4.3.1], the
space of D', which satisfying the pullback diagram

D D’

’ |

EXRSHEXR(S@M)

| l

SpétS —— Spét(S & M)

is equivalent to

MapQCoh(D)(LD/EXRS7 XfrE) = MapQCoh(D)(LD/EXRS7 Xf*op*M)

Push forward along p o f, and by [Lurl8c, Proposition 6.4.5.3] we have

Mapqeon() (Lp/Bx s B 0 p*M) ~ Mapgeonspers) (S5 P+ © f+Lp)Bxspenspets: M).

And by [Lurl8c, Proposition 16.3.2.1] and Lemma 2.16, any such D’ is a closed
immersion of CDivg/r(S @ M) and determine a line bundle of CDivg r(S @ M).
Since the diagram

D D’

| |

SpétS — = SpétS @& M

is a pullback diagram, so D’ is a square zero extension of D. By [Lurl8c, Proposition
16.3.2.1], we get D' — Spét(S @ M) is flat, proper and locally almost of finite

presentation. Combining these facts, we find that

Fy(M) = Mapqconspas) (504 © f+Lp/pxs,anspéts: M)

Consequently, the functor CDivg g satisfies condition (a) of [Lurl8c, Example
17.2.4.4] and condition (b) follows form the compatibility of f, with base change. It

then follows that CDivg/r admits a cotangent complex Lcpiy, P satisfying n* Lopiv,, R =
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Y7040 frLp/Bxs,nspers- Since the quasi-coherent sheaf Lp)pxg,,, zspers is connec-
tive and almost perfect. The R-module X~ 'p o fiLp, ExspeerSpéts 18 (-1) connective.
Lepivy,, 1s almost perfect, since we have CDivg/p it is infitesimally cohesive and

admits a cotangent complex. And it is locally almost of finite presentation, so by

[Lurl8c, 17.4.2.2], its cotangent complex is almost perfect.

We next show that it is connective. Let R’ be an E,.-ring, and n € CDiv(Egr /R),
we wish to prove that M = n*Lcpiv, n € Mod’, is connective. We already know
that M is is (-1)-connective and almost perfect, the homotopy group m_1M is a
finitely generated myR' module. To prove that m_; vanishes. By the Nakayama’s

lemma, this is equivalent to prove that
T M (k Qg M) ~ Tor®F (k,7_1 M)

equals to 0 for every residue filed of R. Then we may replace R’ by k and assume

k is a algebraically closed filed.

Let A = k[t]/(t?), unwinding the definitions, we find that the dual space Homy,(7_, M, k)
can be identify with the set of automorphism of 74 such that it restrict identity of
n. we wish to prove this set is trivial. But this follow from the fact : Let X/k be
scheme, L is an line bundle on X, if L, is also a line bundle of X 4. If we have f is
an automorphism of L4 such that f|L is identity on L, then f is the identity. (This

fact follows from the connectiveness of cotangent complexes of Picard functors.)

3 Derived Level Structures

3.1 Derived Level Structures of Spectral Elliptic Curves

Let C' be a one dimensional smooth commutative group scheme over a base scheme

S, and A be an abstract finite abelian group. A homomorphism of abstract groups
¢:A— C(S)

is said to be an A-Level structure on C'/S if the effective Cartier divisor D in C'/S defined
by
D = Yeealo(a)]

is a subgroup of C'/S.
The following result due to Katz-Mazur [KM85] give the representability of level

structures moduli problems.
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Proposition 3.1. [KM85, Proposition 1.6.2] Let C/S be an one dimensional smooth

commutative group scheme over S. Then the functor
Levelc/g : Schg — Set

T — the set of A-level structures on Cp/T

is representable by a closed subscheme of Hom(A, C) = C[Ny] xg -+ xg C[N,].

Definition 3.2 Let E/R be a spectral elliptic curve. In the level of objects, a derived
A-level structure is a relative Cartier divisor ¢ : D — E of E, such that the underlying
morphism DY — EY is the inclusion of the associated relative Cartier divisor ¥,e4[do(a)]
into EY, where ¢ : A — EY(R") is any classical level structure. We let Level(A, E/R)
denote the oo-category of derived A-level structures of E/R, whose objects can be viewed
as pairs ¢ = (D, ¢).

It is easy to see that for a spectral elliptic curve E/R, the oco-category Level(A, E/R)

is a oo-groupoid, since it is a full subcategory of CDiv(E/R), which is a oo-groupoid.

Lemma 3.3. Let E/R be a spectral elliptic curve and ¢s : D — E be a derived level
structure. Suppose thatT' — S be a morphism of nonconnective spectral Deligne-Mumford

stacks, then the induce morphism ¢g : Dy — Er is a derived level structure of Ep/T.

Proof. We notice that derived level structure is stable under base change. So qﬁg A —
(E x5 T)°(Ty) = E°(Ty) is classical level structure, so Dy, is the associated classical
relative Cartier divisor of a classical level structure. And Dy — E7 is a relative Cartier
divisor in spectral algebraic geometry, this is just the base change of relative Cartier
divisor (Lemma 2.14).
|
We first recall a proposition in Katz and Mazur’s book [KMS85, Corollarly 1.3.7]:
Suppose that C'/S is a smooth group curve, and D is a relative Cartier divisor of C, then
exists a closed subscheme Z of S, satisfying for any T — S, D is a subgroup of Cp if
and only if T" passing through 7.

Lemma 3.4. Let E/R be a spectral elliptic curve, and D — E be a relative Cartier divisor.
There exists a closed spectral Deligne-Mumford substack SpétZ C SpétR, satisfying the
following universal property:

For any S € CAlgy', such that the associated sheaf of Dg is a relative Cartier divisor
of Xg and (Ds)? is a subgroup of (Es)® if and only if R — S factor through Z.

Proof. For a map R — S, it is obvious that Dg is a relative Cartier divisor of Xg. By
[KM85, Corollarly 1.3.7], we just notice that if (Dg)% /7S is a subgroup of (Eg)" /79,
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we have SpecmyS must passing through a closed subscheme SpecZ, of SpecmgR. This
corresponds a closed spectral subscheme SpecZ of SpecR, sice we have the map R — S
such that mpR — mS pass through moR/I for some ideal I of moR, so we have R — S
passing through RY"() see [Lurl8c, Chapter 7] for details about nilpotent R-module.
Conversely, suppose that R — S passing through 7, then we have S = Og,étS is vanishing
on L. That is we have moR — mS passing through myR/ VI, but this is equivalent to say
SpecmS — Specmy R passing through SpecmoR/I = SpecZy, and so (Dg)" is a subgroup
of (Es)°.

|

Theorem 3.5. Let E/R be a spectral elliptic curve, then the functor

Levelg/r : CAlgy — S
R' — Level(A, Er /R')

is representable by a closed substack S(A) of CDivx/r. Moreover, S(A) = SpétPgr for

an E-ring SpétPg g, which is locally almost of finite presentation over R, .

Proof. By definition, the functor Levelg g is a subfunctor of the representable functor
CDivy/g. We consider a spectral Deligne-Mumford stack GroupCDiv defined by the
pullback diagram of spectral Deligne-Mumford stacks

GroupCDivy,p — CDivg g

l |

SpétZ SpétR.

It is easy to say that GroupCDivg g valued on a R-algebra R’ is the space of relative
Cartier divisors D of E Xgper SpétR’, such that DY is a subgroup of (E xspeir SpétR’)®.
It is cleared that
GroupCDivg,p = H Ay — CDivgp
Ap€EFinAb

where Ay — CDivg/g valued on a R-algebra R’ is the space of relative Cartier divisors
D of E Xgspar SpétR’, such that D is an algebric subgroup of (E Xgperr SpétR’)® and
DY(R') = Ay. It is cleared that Levelg/r = A — CDivg/p, so we have Levelgp is
representable by a open substack of GroupCDivg g.

To prove the second part, we consider the map S(A) — SpétR, they are all spectral
algebraic spaces. By [Lurl8c, Remark 5.2.0.2], a morphism between spectral algebraic
spaces is finite if and only if its underlying morphism between ordinary spectral algebraic

space is finite in ordinary algebraic geometry. So we only need to prove S(A)" is finite
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over Specmy R, but this is just the classical case since S(A)Y is the representable object of
the classical level structure, which is finite over Ry by [KM85, Corollary 1.6.3].
|

3.2 Derived Level Structures of Spectral p-Divisible Groups

Before we talk about derived level structures of spectral p-divisible groups, let us
first review something about the classical level structures of commutative finite flat group
schemes. Let X/S be a finite flat S-scheme of finite presentation of rank N, it can be
prove that X/S is finite locally free of rank N. This means that for every affine scheme
SpecR — S, the pullback scheme X xg SpecR over SpecR have the form SpecR’, where
R’ is an R-algebra which is locally free of rank N. For an element f € R’ which can acts
on R’ by multiplication, define an R-linear endmorphism of B’. Because R’ is a locally
free of rank N. Then multiplication of f can be representable by a N x N matrix M.
Then we can define the characteristic polynomial of f to be the characteristic polynomial
of My, i.e.,

det(T — f) = det(T — My) = TV — trace(My) + - - - + (—1) NNorm(f).

Let {Py, -, Py} be aset of N points in X (.5), we say this set is a full set of sections

of X/S if one of the following two conditions are satisfied:

1. For any SpecR — S, and f € B = H%(Xg, O), we have the equality

det(T — f) = [[(T = f(p:)).

i=1

2. For every SpecR — S, and f € B = H°( Xy, ), we have

Norm(f) = ] [ ().

Actually, these conditions are equivalent.

If we have N not-necessarily-distinct points {Py,---, Py} in X(5), then we have a

morphism

Oz — ®(Pi)*(OS)

of sheave over X. It is easy to see that this map is surjective, and it defines a closed

subscheme D of X, which is flat, proper over S. So by the construction, for a ¢ :
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A — X(95), we can define closed subscheme D of X which corresponds to the sheave
®a€A¢(a)*OS'

Lemma 3.6. For a finite flat and finite presentation S-scheme Z, Hom(A, Z) is an open
subscheme of Hilby/g.

Proof. Let T'— S be a S-scheme, for any D — Y =T xg Z in Hilb(Y) = Hilb(T x¢ Z),
we need to prove that the set of points ¢ € T which satisfying D, — Y, is coming
from the closed subscheme associated with a map ¢ : A — Z(T) = Y(T) is an open
subset of T. Since D is the closed subscheme defined by Oy — Op, if D; comes form
Oyl = @Q(P;)«(Or)|t. Then by the definition of stalks of sheaves, there exists an open
subset U of D such that ¢ € U, and Dy is defined by Oy |y — @Q(F;)«(Or)|v-

[

Definition 3.7 Suppose that G/S be a rank N commutative finite flat S-group scheme
of finite presentation and A is a finite abelian group of order N. A group homomorphism

¢:A— G(S)

is called an A-generator of G/S, if the N points {¢(a)}aca are a full subset of sections of

G(S). In these cases, we say ¢ is a Drinfeld level structure.

Proposition 3.8. [KM85, Proposition 1.10.13] Suppose that G is a rank N finite flat
commutative group scheme of finite presentation over S and A is a finite abelian group of

order N. Then we have the following two propositions:

1. The functor A—Gen(G/S) on S-schemes defined by
T — {¢|l¢p: A— G(T) is a Drinfeld level structure}

is representable by a finite S-scheme of finite presentation. Actually, it is the closed
subscheme of Homgeg (A, G) over which the image of sections {Puniv(a)}aca of the

universal homomorphism Gupi, : A — G form a full set of sections.

2. If G/S is finite étale over S of rank N, we have
A—Gen(G/S) ~ Isomsa (A, G),

such that each connected component of S, A—Gen(S) is either empty or is a finite
tale Aut(A)-torsor.
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Derived Level Structures of Spectral Finite Flat Group Schemes

For a spectral commutative finite flat group scheme G over R. By the definition of
finite flat, we have G = SpétB for a finite flat R-algebra B. We let Hilb(G/R) denote
the full subcategory of SpDM ; spanned by those D — G such that D — G is a closed
immersion of spectral Deligne-Mumford stacks, and the composition D — G — R is
flat, proper and locally almost of finite presentation. Then we find Hilb(G/R) is actually

equivalent to the oo-category of diagrams which have the form

N

such that R’ is flat, proper and locally almost of finite presentation over R and satisfies

R B

certain conditions. It is easy to see that Hilb(G/R) is a Kan complex. Then we can define

a functor

Hilbg, s : CAlg) — S
R — Hilb(Gp)

Theorem 3.9. Suppose that G is a commutative finite flat group scheme over an E..-
ring R, then Hilbg g is representable by a spectral Deligne-Mumford stack which is locally

almost of finite presentation over R.

Proof. This is just a special case of spectral algebraic geometry version of Lurie’s theorem
[Lur04, Theorem 8.3.3].
|

Remark 3.10 We can proof this theorem by the same argument of the proof of repre-

sentability of relative Cartier divisors.

Definition 3.11 Let G be a spectral commutative finite flat group scheme of rank N over
an E..-ring R, and A be an abstract finite abelian group of order N, an A-level structure
of G is an object ¢ : D — G in Hilb(G/R), such that my¢.Op ~ @¢(a).Ospecryr, Where
$(a)«Ospecnor comes from a map ¢ : A — GV (moR).

Lemma 3.12. Let G/R be a spectral commutative finite flat group scheme of rank N over
an Es-ring R and let D be a Hilbert closed subscheme of G. Then there exists a Eo.-ring
7, satisfying the following universal property:

For any R — R’ in CAlgy, (Dg)® is a derived A-level structures of (Gr)¥ if and
only if R — R’ factor through Z.

27



Proof. For R — R’ in CAlg}, it is obvious that D is in Hilb(Gg//R’). This means that
(Dg)® is a Hilbert closed subscheme of (Gg/)¥. For Dg to be a derived level structure,
we have Dy, must lie in Hom(A, G¥)(mR’), this means that SpecmyR’ — SpecmyR must
passing through an open of SpecmyR, since Hom(A, G¥) can be viewed as a open sub
scheme of Hilb(GY/RY). Then we have moR — mo R’ passing through Wy, where W is a
localization of myR, so we have R — R’ must passing through W, where W is an E_.-ring,
which is a localization of R. As for now, we already have a map SpétR’ — SpétW, such
that Dp is a Hilbert closed subscheme of G/, and mpi,Op,, comes from a map ¢ : A —
GY(myR'). For Dy, want to be a derived level structure, Ogo — ¢(a).(Ospecryr’) needs
to be an isomorphism, i.e., these N points ¢(a)sc4 must be a full section of G¥(mR’).
By [KMS85, Proposition 1.9.1], for a set of N points of (GY(mR’)) to be a full section of
GV (mR'), SpecmoR’ — SpecmyW must passing through a closed subscheme of SpecWVj.
Then moW — mo R’ must passing through Z,, where Z is equals moW/I for some ideal T
of oW . This means that we have W — R’ pass through Z = WNI(), By the discussion
above, we have Z is the desired E.-ring. And the converse is also true by the same

discussion in the derived level structures of curves.
[ |

Proposition 3.13. Suppose that G is a spectral commutative finite flat group scheme of
rank N over an Ey-ring R and A is an abstract finite abelian group of order N. Then

the following functor
Levelfj  : CAlgp = S; R — Level(A,Gr /R)

is representable by an affine spectral Deligne-Mumford stack S(A) = SpétPq/r.

Proof. We first prove the representability. By definition, the functor Levelé /R 1S &
subfunctor of the representable functor Hilbg/r. We consider a spectral Deligne-Mumford
stack S(A) defined by the pullback diagram of spectral Deligne-Mumford stacks

S(A) —= Hilbg/x

L

SpétZ — SpétR.

It is easy to say that S(A) valued on a R-algebra R’ is the Hilbert closed subscheme D of
E Xsperr SpEtR’, such that DY is a derived level A-structure of (E Xgperr SpétR')¥. Then
S(A) is the desried stack.

For the affine condition, we need to prove that S(A) is finite in spectral algebraic
geometry. By [Lurl8c, Remark 5.2.0.2], a morphism between spectral algebraic spaces is

finite if and only if its underlying morphism between ordinary spectral algebraic space is
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finite in ordinary algebraic geometry. We have S(A) and SpétR are spectral spaces. So
we only need to prove S(A)Y is finite over Ry, but this is just the classical case, which is
finite by [KKM85, Proposition 1.10.13].

|

Derived Level Structures of Spectral p-Divisible Groups

Remark 3.14 We let FFG(R) denote the oco-category of spectral commutative finite
flat group schemes over an E.-ring R. By [Lurl8a, Proposition 6.5.8], there is another
equivalent definition of spectral p-divisible group [Lurl8b, Definition 6.0.2]. A spectral

p-divisible group over a connective E,-ring R is just a functor
G : CAlgy — Mody!
which satisfies the following conditions:
1. Suppose that S € CAlg%, the spectrum G(S) is p-nilpotent, i.e., G(S)[1/p] =~ 0.

2. For M be a finite ableian p-group, the functor
CAlg%l — S? S = MapModZ(M7 G(S))

is copresentable by a finite flat R-algebra.

Let X be a spectral p-divisible group of height h over an E.-ring R, that is a functor
X : Abf — FFG(R).

For every p* € Abf . we let X[p*] denote the image of p* of X. We find that X [p*] is a

rank (p*)" spectral commutative finite flat group schemes over R.

Definition 3.15 Let GG be a spectral p-divisible group of height h over a connective F.-
ring R . For A a finite abelian group, an derived (Z/p*Z)"-level structure of G is a derived
(Z./p*7Z)"-level structure

¢: D — Glp']

of G[p¥], which is a spectral commutative finite flat scheme over R. We let Level(k, G/R)
denote the co-groupoid of derived (Z/p*Z)"-level structures of G/R.

Theorem 3.16. Let G be a spectral p-divisible group of height h over an E..-ring R.
Then the following functor

Levelt;  : CAlgy — S; R’ — Level(k,Gp//R')
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is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPé/R.

Proof. We just notice that by the definition of spectral p-divisible group, G[p*] is a
spectral commutative finite flat scheme. Then the theorem follows form the above result

of general spectral commutative finite flat group scheme.
[

Non-Full Level Structures

The above cases only cares full level structures of commutative finite flat schemes,
actually we can define general level structures of finite flat group schemes. Let G be a
spectral commutative finite flat group scheme of rank N over an E..-ring R, and A be an
abstract finite abelian group, an derived A-level structure of G is an object ¢ : D — G
in Hilb(G/R), such that DY is a subgroup of G and G¥(myR) is isomorphic to A. We let
Level; (A, G/R) denote th space of derived A-level structure. And Levely(A, G/R) denote
the space of equivalence class D — G in Hilb(G/R) such that G¥(myR) is isomorphic to
A, two object D, D" are equivalent if the image of DY — G¥ and D'¥ — G are same.

Proposition 3.17. Suppose that G is a spectral commutative finite flat group scheme
of rank N over an Ey-ring R and A is an abstract finite abelian group of order not

necessarily equal to N. Then the following functor
Levelg, : CAlgiy' = 8; R’ — Levely (A, G /R)

s representable by an affine spectral Deligne-Mumford stack.

Proof. We just notice that the classical level structure functor Level(A, GV /moR) is
representable by a closed subscheme Hom(A, G), the using the same discussion of full

level case, we get the desired result.
|

Remark 3.18 The above proposition also true for Level>*. By the spectral commutative
finite flat scheme cases, we can get the representability results of spectral p-divisible group
case.

We let Level; (k, G/R) denote the oo-groupoid of derived (Z/p*Z)-level structures of
G/R. Then the following functor

Levelg];R : CAlgy — S; R — Levely (k,Gr/R)

is representable by an affine spectral Deligne-Mumford stack S;(k) = SpétPé’fR.
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We let Levely(k, G/R) denote the co-groupoid of derived (Z/p*Z)-level generators of
G/R. Then the following functor

Level%];R : CAlgy — S; R — Levely(k, Gr//R)

is representable by an affine spectral Deligne-Mumford stack Sy(k) = Spétpg’fR.

4 Applications

4.1 Spectral Elliptic Curves with Derived Level Structures

There exists a spectral Deligne-Mumford stack M.;; whose functor of points is

Mell : CAlgcn — S
R+—— Mell(R),

where M (R) = El(R)~ is the underline oo-groupoid of the oo-category of spectral
elliptic curves over R.
And we have the classical Deligne-Mumford stack of classical elliptic curves, which

can be viewed as a spectral Deligne-Mumford stack

M, o CAlg™ — S
R +— M% (moR)

where M, (mR) is the groupoid of classical elliptic curves over the commutative ring
moRR.

And for A denote Z/NZ, or Z/NZ x Z/NZ, we have the classical Deligne-Mumford
stack of classical elliptic curves with level-A structures, which can also be viewed as a

spectral Deligne-Mumford stack.

ML (A) © CAlg™ — S
R +— M% (A)(myR)

e

where M, (A)(moR) is the groupoid of classical elliptic curves with level A-structures
over the commutative ring myR.

In last chapter, we define and study derived level structures. The construction X —
Level(A, X/R) determines a functor Ell(R) — S which is classified by a left fibration
Ell(A)(R) — El(R). Objects of Ell(A)(R) are pairs (E, ¢), where FE is a spectral elliptic
curve and ¢ is a derived level structures of E.

31



For every R € CAlg™, we can consider all spectral elliptic curves over R with derived

level structures. This moduli problem can be thought as a functor

M611<A) : CAlgcn =S
R— Meu(A)(R) = ENl(A)(R)

where Ell(A)(R) is the space of spectral elliptic curves E with a derived level structure
¢: A— E.

Proposition 4.1. The functor M, (A) : CAlg™ — S is an étale sheaf.

Proof. Let {R — U} be an étale cover of R, and U, be the associate check simplicial

object. We consider the following diagram

El(A)(R)~ —L lima EN(A)(U,)>

) )

Ell(R)™ I lima EN(U,)™.

The left map p is a left fibration between Kan complex, so is a Kan fibration [Lur(09a,
Lemma 2.1.3.3]. And the right vertical map is pointwise Kan fibration. By picking a suit
model for the homotopy limit we may assume that ¢ is a Kan fibration as well. We have
g is an equivalence by [Lurl8a, Lemma 2.4.1]. To prove that f is a equivalence. We only
need to prove that for every E € Ell(R), the map

p 'E ~ Level(A, E/R) — lign Level(A, E xg U, /U,) ~ q 'g(E)

is an equivalence. We have the Level(A, E) as full co-subcategory of CDiv(E/R) and
lima Level(A, E x g U,) as a full subcategory of

lign CDiv(E xr Us(U,))
But CDiv is an tale sheaf. So the functor
Level(A, E/R) — ligl Level(A, E xr U, /U,).

is fully faithful. To prove it is a equivalence, we only need to prove it is essentially
surjective.

For any {¢y, : D — E xp U} in lima Level(A, E xg U, /U,). Clearly, we can find a
morphism ¢r : D — E in CDiv(E/R) whose image under the equivalence CDiv(E/R) ~
lima CDiv(E xg U, /U,) is {¢u, : D — E xgU,}. We just need to prove this ¢p: D — E
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is a derived level structure. This is true since in the classic case, Level(A4, EY(Ry)) ~
limp Level(A, EY(1<U,)) and ¢p : D — E is already a relative Cartier divisor.
|

Lemma 4.2. M (A) : CAlg™ — S is a nilcomplete functor, i.e., M (A)(R) is the
homotopy limit of the following diagram

e — Mell<~’4) (TSmR) — Meu(.A)(TSmflR) — s — Mell(A) (T§0R>
Proof. For a spectral elliptic curve R, there is an obvious functor
0 : Me”(.A)(R) — E%Mell(fl) (TgnR>

define by (E,¢ : D — E) — {(E Xspetr SP€tT<n R, ¢ © D Xgperr SPétT<n R — E Xsperr
SpétT<,R)},. Here we notice that (E Xspetr SpétT<n R, ¢ : D XgpetrSPEtT<n R — E Xspern
Spétt<,R) is in M (A)(7<nR).

First, we prove that  is essentially surjective. An object in E%MQII(A)(TSmR) can

be written as a diagram

<+ Dy ——= Dy ——= Dy ——= -+ ——= D
e By —— By By —— - —— [

where each E, is spectral elliptic curve over 7, R and D, — £E, is a derived
level structure, and satisfying D,, = D, X Spétren 1R Spétt< R, E,, = E, 11 X Spétren 1R
SpétT<, R. By the nilcompletness of M.y, we get a spectral elliptic curves E, such that
E xg 7<,R ~ E,, and by the nilcompletness of Var, [Lurl8c, Proposition 19.4.2.1],
we get a spectral Deligne-Mumford stack D, such that D,, = D Xgy4r Spétt<,R. We
need to prove the induce map D — FE is a derived level structure, but this follows form
nilcompletness of Levelg/g.

Second, we need to prove that this functor is fully faithful. Unwinding the definitions,
we need to prove that for every (X, D; — X), (Y, Dy = Y) € M (A)(R), the following

map is a homotopy equivalence.

MapMelz(A)(R)((Xa DX)? (K DY)) — MapMeu(.A)(R) (ILIE(XTM DX,n)a ILIE(Yma DY,m))

where X, is 7<, X = X Xxp7<, R, and Y, Dx ,, Dy,, similarly.

But we notice that this is equivalent to following equivalence

MapSpDM/R<<X7 Dx), (Y, Dy)) — (h_HrllMapSpDMT<n((Xm Dx.n), (Yo, Dyn))-
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And this equivalence follows from [Lurl8c, Proposition 19.4.1.2]

Lemma 4.3. M. (A) : CAlg™ — S is a cohesive functor.

Proof. For every pullback diagram

D——A
C——=2B

in CAlg™ such that the underlying homomorphisms mgA — myB < moC' are surjective.
We need to prove that

Men(A)(D) —= M (A)(A)

l l

M (A)(C) — My (A)(B)

is a pullback diagram.
We have the following diagram in Fun(CAlg™,S),

M (A) L= My

N

*

By [Lurl8c, Remark 17.3.7.3], M *(A) is a cohesive fucntor if and only if f is cohe-
sive. Since we have M,y is cohesive functor, h is a cohesive morphism in Fun(CAlg™, S).
And again by [Lurl8c, Remark 17.3.7.3], f is cohesive if and only if ¢ is cohesive. So we
only need to prove that g is a cohesive morphism. But by [Lurl8c, Proposition 17.3.8.4]
g is cohesive if and only if each fiber of g is cohesive, i.e., for R € CAlg™ and a point
ne € M (R) which represents a spectral elliptic curve E, the functor

fo: CAlgy = S, R Ma(A)(R) X mr) {05}

is cohesive. But we have R’ +— My(A)(R') X,y {ne} =~ Level(A, E xg R'/R') ~
Levelg/r(R'). The cohesive of M;(.A) then follows from the cohesive of Levelg,g.
[ |

Lemma 4.4. The fucntor My (A) : CAlg™ — S is integrable

Proof. We need to prove that for R a local Noetherian E.-ring which is complete with

respect to its maximal ideal m C myR, then there is an equivalence

MapFun(CAlg“",S) (SpétR/7 Mell ("4)) — MapFun(CAlgc",S) (Spr,7 MEU (A))
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We have the following diagram in Fun(CAlg™,S),

Meu(A) L~ My

RN

*

By [Lurl8c, Remark 17.3.7.3], M (A) — * is a integrable fucntor if and only if
f is integrable. Since we have M, is integrable functor, h is a integrable morphism in
Fun(CAlg™,S). And again by [Lurl8c, Remark 17.3.7.3|, f is integrable if and only if g
is integrable. So we only need to prove that g is a integrable morphism. But by [Lurl8c,
Proposition 17.3.8.4] g is integrable if and only if each fiber of g is integrable, i.e., for
R € CAlg™ and a point ng € M_;(R) which represents a spectral elliptic curve E, the

functor
fe:CAlgR =8, R — Ma(A)(R) X pmoum) {ne}

is integrable. But we have R — My(A)(R') X ry {ne} =~ Level(A,E xg R'/R') ~
Levelg/r(R'). The integrable of M;(.A) then follows from the integrable of Levelg)g.
[ |

Lemma 4.5. The functor Mg, (A) : CAlg™ — S admits a cotangent complex LMdlel, and

moreover L. is connective and almost perfect.
€

Proof. We have a commutative diagram in CAlg™" — S,

Mell (-’4> . Mell

RN

*

Since we have h is infitessimally coheisve and admits a connective cotangent complex, and
f,g is infitessimally cohesive. By [Lurl8c, Proposition 17.3.9.1], to prove that f admits a
cotangent complex. We only need to prove g admits a relative cotangent complex. By
[Lurl8c, Proposition 17.2.5.7], a morphism j : X — Y in Fun(CAlg®™,S) admits a relative
contangent complex if and only if, for any corepresentbale Y’ = Map(R, —) : CAlg™ — S
and any natural transformation Y’ — U, j' in the following pullback diagram admit a

cotangent complex.
Y Xy X — X

C

Y’ Y

To prove that M, (A) — M,y admits a cotangent a cotangent complex, we just need to

prove that for any R € CAlg®™, and a spectral elliptic curve E which represents a natural
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transformations SpecR — M,y;. The functor

admits a connective cotangent complex. But we have M. (A)(R') X pm ,my {ne} =
Level(E xp R') = Levelg/g(R'). So the results of f : M (A) — * admits a cotan-
gent complex follows from Levelg,r admits a cotangent complex. And the properties of

connective and almost perfect also follows from the property of the cotangent complex of

CAIgR — S, R — Mell(A)(R/> X Meu(R) {77E}

Levelg/g.

Lemma 4.6. The functor My (A) : CAlg™ — S is locally almost of finite presentation.

Proof. Consider the functor M (A) — x, it is infitesimally cohesive and admits a
cotangent complex which is almost perfect, so by [Lurl8c, 17.4.2.2], it is locally almost of

finite presentation. So M.y (A) is locally almost of finite presentation, since # is a final

object of Fun(CAlg™,S).

Theorem 4.7. The functor

M (A) = CAlg— S
R+— M (A)(R) = El(A)(R)~

is representable by a spectral Deligne-Mumford stack.

Proof. By the spectral Artin representability theorem, we need to prove that the functor

M (A) satisfying the following condition

1.

2.

3.

4.

3.

The space M (A)(Ryp) is n-truncated for every discrete commutative ring Ry.
M (A) is a sheaf for the étale topology.

M (A) is a nilcomplete, infinitesimally cohesive, and integrable functor.

M (A) admits a cotangent complex L M.u(4) Which is connective.

M. (A) is locally almost of finite presentation.

But these follows form the above series of lemmas.
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4.2 Higher Categorical Lubin-Tate Towers

We recall that for a height h p-divisible group Gy over a commutative ring Ry and
suppose A € CAIgcpl We recall that a deformation of Gy over R is a spectral p-divisible
group over R together with an equivalence class of Gy-tagging of G. We let Level(k, G/R)
denote the space of derived (Z/p*Z)"-level structure of a height h spectral p-divisible

group. We consider the following functor

M, CAlgcpl — S
R — DefLevel(Gy, R, k)

where DefLevel(Gy, R, k) is the co-category whose objects are triples (G, p,n)
1. G is a spectral p-divisible group over R.
2. pis an equivalence of G taggings of R.
3. m: D — G is a derived (Z/p*Z)"level structure of G.

Theorem 4.8. The functor My, is corepresentable by a E.-ring which is finite over the

unoriented spectral deformation ring of Gj.

Proof. We let Eyy;,,/R¢ denote the universal spectral deformation of Go/Ry. Suppose
that G is a spectral deformation G to R, we get a map of E-rings R¢;, — R, and an
equivalence FE,,;, X Ry R ~ G of spectral p-divisible groups. By the universal objects of

level structures. We have the following equivalence

Level(k:, G/R) >~ Level(k, Euniv X jo(z) R) ~ MapCAlgad,cpl (PE“M"/RE% s R),
R'LLTL

Go

where Pg,,,,/rur is the universal object of derived level structure functor associated with
0

univ/
the p-divisible group Eypi/ R

Then we consider the following moduli problem

CA]'ngl — S R — MapCAl ad cpl (P unzv/R n R)

For R € CAl gad cpl , Mapg,, e (PEyniv /R%%,R) can viewed the oo-categories of pairs
(o, f), where
a:Ri — R

is the classified map of a spectral p-divisible group G, which is a deformation of Gy, that
isa=(G,p), and f € Map gy, ad cpz (PEumu/R“" , R) = Level(k, Eypiv X Ryn R) is a derived

level structure of G/R. So we get Map . adcrl (PEyin /R , R) is just the oo-category of
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pairs (G, p,n). By lemma 3.16, PBoio/ R 15 finite over R!. So we have PEonio/ Ry 18 the
desired spectrum.
|
Although we get spectra come from a conceptual derived moduli problems, but these
spectra may be complicated, since we didn’t know the homotopy groups. In algebraic
topology, orientation of E.-spectra make E, page of Atiyah-Hirzebruch spectral sequences
degenerating, and give us the information of homotopy groups.
Let Gy be a height h p-divisible group over Rg,. We consider the following functor
MY o CAlgh — S

cpl

R — DefLevel” (Gy, R, k)

where DefLevel” (G, R, k) is the space of four tuples (G, p, e,n), where
1. G is a spectral p-divisible over R.
2. pis an equivalence class of GGy taggings of R.

3. e: 5% = Q®G°(R) is an orientation of the G°, where G° is the identity component
of G.

4. n: D — G is a derived (Z/p*Z)"-level structure of G.

Theorem 4.9. The functor MY : CAlg® — S is corepresentable by an Eo-ring JKy,

cpl
which is finite over the orientated deformations ring R .

Proof. Let Def” (Gy, R) denote the oo-groupoid of triples (G, p,e), where G is a p-

divisible of over R, p is an equivalence class of Gy-taggings of R, and e is an orientation

of the identity conpoment of G. By [Lurl8b, Theorem 6.0.3, Remark 6.0.7], the functor
M CAlg™ — S

cpl

R — Def” (G, R)

is corepresnetable by the orientated deformation ring Rg , that is we have an equivalence

of spaces
MaPCAlggg,(Rgo7 R) ~ Def” (Gy, R).

Let E°T

univ

be the associated universal orientation deformation of G to Ry, , then it is obvi-
ous that J Ly = Pgor R the universal object of derived level structures of E7, /R,

is the desired spectrum similar to th unorientated case.

38



We call this spectrum JL; the Jacquet-Langlands spectrum. It is easy to see that
this J L), admit an action of GLj(Z/p*Z) x Aut(Gy). And when k varies, we have a tower

SpétT Ly,

SpétT Lo

We call this tower higher categorical Lubin-Tate tower.
Let E be a local field, G be a reductive group over E. The classical local Langlands
correspondence predict that for any irreducible smooth representation m of G(E), we can

naturally associate an L-parameter

The geometric Langlands correspondence actually aim to construct an equivalence of
categories
D(QCoh(LocSysqv (X)) ~ D(D(Bung))

from the derived category of quasi-coherent sheaves on GV local systems on X and the
derived categories of D-modules on the moduli stack of G-bundles over X [BD91]. Due
to the work of Fargues-Scholze [FS21], the arithmetic local Langlands correspondence can
also be some kinds of geometric Langlands correspondence, but in the perfectoid world.

In the classical arithmetic geometry, the Lubin-Tate tower can be used to realize
the Jacquet-Langlands correspondence [HTO01]. Is there a topological realization of the
Jacquet-Langlands correspondence? Actually, in a recent paper [SS23], they already re-
alized a version of topological Jacquet-Langlands correspondence. But their method is
based on the Goerss-Hopkins-Miller-Lurie sheaf. They actually consider the degenerate
level structures such that representing object is étale over representing object of universal
deformations.

We hope our higher categorical analogues of Lubin-Tate towers can also establish
a topological version of the classical Langlands correspondence, which means that we
construct representations on the category of spectra. By the construction of Jacquet-
Langlands spectra above, Let G be a formal group over a field of characteristic p, JL be
its f-adic complete Jacquet-Langlands spectrum. Let X be a spectrum with an action of

Aut(Gy,). We have the following brave conjecture.
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Conjecture 4.10. The function spectrum F(X,JL) admits an action of GLy(Z,) and
all its homotopy groups are Z;-modules.

4.3 Topological Lifts of Power Operation Rings

We recall the deformation of formal groups. Let GGy be a formal group over a perfect
field k such that chark = p , a deformation of Gy to R is a triple (G, i, ®) satisfying

e (G is a formal group over R,
o Thereisamapi:k — R/m
o There is an isomorphism ¢ : 7*G = i*G, of formal groups over R/m.

Suppose that we have a complete local ring R whose residue filed has characteristic
p. Let ¢ : R — R,x — P be the Frobenius map. For each formal group G over R,
the Frobenius isogeny Frob : G — ¢*G is the homomorphism of formal group over R
induced by the relative Frobenius map on rings. We write Frob” : G — (¢")*G which is
the composition ¢*(Frob” ') o Frob

Let Gg be a formal group over k, (G,i,«) and (G',#',a’) be two deformations of Gy
to R. A deformation of Frob" is a homomorphism f : G — G’ of formal groups over R
which satisfying

1. io¢" =i and i*(¢7)*Go = (')*Go.

-/

k—> R/m
wl/
k

2. the square
i*(Frob™),

Z‘*fo - Z*(QST)*G[)
W*G—>ﬂ*(f) ™G’

of homomorphisms of formal groups over R/m commutes.

We let Defgr denote the category whose objects are deformations fo Gy to R, and
whose morphisms are deformation of Frob” for some r > 0. We will say that a morphism
in Def has height r, if it is a deformation of Frob”, and the we denote the corresponding
subcategory as Sub”R. Let G be deformation of Gy to R, then it can be proved that the
assignment f — Kerf is a one-to-one correspondence between the morphisms in Subj,

with source G and the finite subgroup of G which have rank p".
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Theorem 4.11. [Str97] Let Goy/k be a height n formal group over a perfect field k.
For each r > 0, there exists a complete local ring A, which carries a universal height r

: (Gs,is,a5) = (Gyig, ) € Sub™(A,). That is the operation f .. —

niv

y T
morphism f] .
T

g (fr..) define a bijective relation from the set of local homomorphism g : A, — R to the

set Sub},. Furthermore, we have:

1. Ao = W(k)[[v1,- - ,vn_1]] is the Lubin-Tate ring.

2. There is a map s : Ay — A, which classifies the source of the universal height r
map, i.e. Gy = s*Gg, where Gg = Gunin/Ao be the universal deformation of Gy,

and A, is finite and free as an Ag module.

3. There is a map t : Ay — A, which classifies the target of the universal height r map,
i.e. Gt == t*GE

4. And there is a bijection {g : A, — R} — Sub"(R) given by g — g*(fI..,)(g*Gs —
g*Gt)

We know that those rings A,,r > 0 have topological meansings.

Theorem 4.12. [Str98] The ring A, in the universal deformation of Frobenuis is isomor-
phic to E°(BX,)/1, i.e,
A, =2 E°(BY,)/1

where [ is transfer ideal.

The collections {A,} have the structures of graded coalgerbas, for s = sy, t =t} :
Ay — Ay, which is induced by E° cohomology on BY — *, we have

t
p= mugg: Apyr o A — A4, Ay

which classifying the source,target, and composite of morphisms. So for the power oper-
ation R*(X) — RF(X x BY,,). For z = *, we have

WOR — EO(BEpr)/I X 7TOR = A[T] X 7T()R

This make m9R becomes a ['-module, where I' are duals of A[r].

For more details about power operation in Morava E-theory, one can see [Rez06,
Rez09] and [Rezl3]. Direct computations are in [Rez08] for height 2 at the prime 2,
[Zhul4] for height 2 at prime 3, [Zhul9] for height 2 at all primes. Cases of height > 2 is
still lack of computations.

Because we have the assignment f — Kerf is a one-to-one correspondence between
the morphisms in Sub} with source G' and the finite subgroup of G which have rank p".

So it is easy to see that A, corepresent the following moduli problem
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Mo, : CAlgl — S
R — Def(Gy, R, p")

where Def(Gg, R, p") consists of pairs (G, H) where G is an defomration Gy to R, and H
is a rank p” subgroup of G.

Proposition 4.13. For every integer r > 1, there exists a Ey-ring E, ., such that
WOEn,r = Ar'

Proof. For the formal group Gy over a field k of characteristic p. We just consider the
functor CAIg‘Zﬁl — S by sending an FE.,-ring R to quadruples (G, p,e,n), where (G, p)
is spectral deformation of Gy to R. e is an orientation of G°, the identity component
G, and n € Levely(k,G/R) is a derived level structure. Using the same argument in
full level structure and the fact Level?}l’jR is representable, see Remark 3.18. We get this
proposition.

|
Remark 4.14 Although, we obtain spectra whose my are the power operation rings of
Morava E-theories. But we don’t know higher homotopy groups of these spectra, since
these spectra are not even periodic and they are not étale over Morava E-theories. We

will continue to study such spectra in the future.
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