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Moduli Spaces



Examples

1. The Teichmüller space parametrizes complex structures of a surface up to isotopy.
2. Hilbert Schemes, relative Cartier divisors, Chow schemes
3.Mell of elliptic curves,Mg of genus g algebraic curves for g ≥ 2.
4.MCY of polarized Calabi-Yau varieties,MK

Fano of K-stable Fano varieties.
5. QCohr,d(C) andBunr,d(C) for C be a smooth, connected, and projective curve
over a field k.

6. The moduli space of G-bundles with flat connections over a Riemann surface
(phase spaces of G-Chern-Simons theory).

7. The Hitchin moduli space of Higgs bundles over an algebraic curve.
8. The moduli space of monopoles.



DerivedModuli Spaces
The hidden smoothness principle refers to the conjectural picture envisioned in
1980s by Deligne, Drinfeld, Beilinson, Kontsevich that moduli spaces in algebraic
geometry which are often singular, should be just truncations of a moduli spaces
in some derived sense.
These moduli spaces should be smooth, and this property is lost due to
truncation. The derived moduli spaces were realized in derived algebraic
geometry.

Algebraic Geometry Derived Algebraic Geometry

Commutative rings Simplicial commutative rings, E∞-rings,CDGA

Schemes, Stacks Derived Schemes, Derived Stacks

Hom(X , Y ) ∈ Set Map(X ,Y) ∈ S

Sch ∈ Cat dSch ∈ Cat∞



Higher Algebra
A stable homotopy theory is a presentable symmetric monoidal stable∞-category
(C,⊗, I) such that the tensor product commutes with all colimits. (simplicial rings, Sp,
D(R))
1. Map(X , Y ) ∈ S
2. Ho(C) is a symmetric monoidal triangulated category.
3. There is an equivalence

Σ : C ⇄ C : Ω.

4. We can define homotopy groups

πnE := [ΣnI,E ].

5. CAlg(C) ⊂ Fun(Fin∗, C) consists of thoseM , such that
{M(ρi) : M(〈n〉) → M〈1〉}1≤i≤n determines an equivalenceM(〈n〉) → M(〈1〉)n.

6. We will say thatM ∈ ModA is flat (étale, finite flat) if the following conditions
holds

π0M is flat(étale, finite flat) over π0A.
πnA ⊗π0A π0M ∼= πnM



Derived Stacks
1. The category of derived affine schemes over k is

Schaffine := (CAlgcn)op.

2. The category of derived prestack is

PrStk := Fun(((Sch)affine)op,S).

3. The category of derived stack is

ShvS(Schaffine)

4. f : X1 → X2 in Stk is k-representable if for any S ∈ Schaffine and S → X2,
S ×X2 X1 is representable by a (k − 1)-Artin stack.

5. Stkk−Artin is the category consists of thoseX satisfies
1. The diagonal mapX → X ×X is (k-1)-representable.
2. There existsZ ∈ Stk(k−1)−Artin and a map f : Z → X which is
(k − 1)-representable, which is smooth and projective.

6. Stack0−Artin ⊂ Sch ⊂ Stack1−Artin ⊂ · · · .



Spectral Stacks

Definition

Anonconnective spectral Deligne-Mumford stack is a spectrally ringed∞-topos
X = (X ,OX ) which locally likes SpétA, for an E∞ ring A. We say X is a spectral
Deligne-Mumford stack, if all such A is connective.

1. We say X = (X ,OX ) is a n-truncated Deligne-Mumford stack if the structure
sheafOX is n-truncated.

2. We say X = (X ,OX ) is a spectral Deligne-Mumford n-stack if X (R0) is
n-truncated for R0 a commutative ring. A spectral algebraic space is a
Deligne-Mumford 0-stack.



Recognition Criterion

Theorem

A spectrally ringed ∞-topos (X ,OX ) is a nonconnective spectral Deligne-
Mumford stack if and only if it satisfying following conditions:
1. The underlying ringed topos (X♡, π0OX ) is a classical Deligne-Mumford
stack.

2. The canoncial geometric morphism ϕ∗ : X → ShvS(X♡) is étale.
3. The homotopy group πnOX is a quasi-coherent sheaf on (X♡, π0OX ).
4. OX is a hypercomplete sheaf.



Spectral Varieties and Spectral p-Divisible Groups

Definition

A spectral variety X over an E∞-ring R is a nonconnective spectral Deligne-
Mumford stack X, such that τ≥0X → Spetτ≥0R is flat, proper, locally almost of
finite presentation, geometrically reduced and geometrically connected.

Abelian varieties over R : commutative monoidal objects ofVar(R).
Spectral elliptic curves over R: spectral abelian varieties of dimension 1 over R.

Definition

A height h p-divisible group over A is a functorX : (Abpfin)op → FFG(A)with the
following conditions
1. X (0) is trivial.
2. X send exact sequence to fiber sequence.
3. X(M) has degree |M |h over A for a finite p-groupM.
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Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X/S, a derived relative Cartier divisor is a
morphismD → X such thatD → X is a closed immersion, the ideal sheaf of D is a line
bundle over X , and the morphismD → S is flat, proper and locally almost of finite
presentation.

Theorem (Xuecai Ma，2024)

Suppose that E is a spectral algebraic space over a connective E∞-ring R, such
that E → R is flat, proper, locally almost of finite presentation, geometrically
reduced, and geometrically connected. Then the functor

CDivE/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic spacewhich is locally almost of finite pre-
sentation over R.



Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R
is a relative Cartier divisorD → E satisfying its restriction to the heart comes from an
ordinary A-level structure.

Theorem (Xuecai Ma，2024)

For a spectral elliptic curve E over a connective E∞-ring R, the functor

LevelE/R : CAlgcn
R → S

R′ 7→ Level(A,ER′/R′)

is representable by an affine spectral Deligne-Mumford stack.



Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived (Z/pkZ)h-level structure of
G is a derived (Z/pkZ)h-level structure

ϕ : D → G[pk ]

of G[pk ]. We let Level(k,G/R) denote the∞-groupoid of derived (Z/pkZ)h-level
structures of G/R.

Theorem (Xuecai Ma，2024)

Suppose G is a spectral p-divisible group of height h over a connective E∞-ring
R. Then the functor

LevelkG/R : CAlgcn
R → S; R′ → Level(k,GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPk
G/R.



FormalModuli Problems
A formal moduli problem is a functor X : (CAlg)Artin

k → S satisfying the following two
conditions:
1. X(k) is contractible.
2. X perserves pull-back along small morphisms.

Theorem

(Pridham-2010, Lurie-2011) If k is a field of characteristic zero, there is an
equivalence of∞-categories

dgLiek → Modulik .

(Brantner-Mathew, 2019) If k is a field of positive characteristic, there is an
equivalence of∞-categories

Modulik,∆ ' AlgLieπk,∆

between formal moduli problems and partition Lie algebra k.



RepresentabilityTheorem

Spectral Artin RepresentabilityTheorem (Lurie，2004-2018)

LetM : CAlgcn → S be a functor and R is a Noetherian E∞-ring such that π0R
is a Grothendieck ring. If f : M → SpecR is a natural transformation. If we have
1.M(R0) is n-truncated for any discrete commutative ring R0.
2.M is an étale sheaf.
3.M admits a connective cotangent complex LM .
4.M is nilcomplete, integrable and infinitesimally cohesive.
5. f is locally almost of finite presentation.

Then M is representable by a spectral Deligne-Mumford stack which is locally
almost of finite presentation over R.



Cohesive
Let X : CAlgcn → S be a functor. We will say that X is

cohesive, if for every pull-back diagram on the left inCAlgcn such that π0A → π0B and
π0B′ → π0B are surjective, the induced diagram on the right is a pullback square in S .

A′

��

// A

f
��

B′ g // B

X (A′) //

��

X (A)

X(f )
��

X (B′)
X(g) // X (B)

infinitesimally cohesive, if for every pull-back diagram on the left inCAlgcn such that
π0A → π0B and π0B′ → π0B are surjective whose kernel are nilpotent ideals in π0A and
π0B′, the induced diagram is a pull-back square in S .

A′

��

// A

f
��

B′ g // B

X (A′) //

��

X (A)

X(f )
��

X (B′)
X(g) // X (B)



Nilcomplete and Integrable
Let X : CAlgcn → S be a functor. We will say that X is
1. nilcomplete if for every connective E∞-ring R, the canonical map

X (R) → lim
←
X (τ≤nR)

is a homotopy equivalence.
2. integrable if for a local Noetherian E∞-ring which is complete with respect to its
maximal idealm ⊂ π0A, the inclusion of functors SpfA → SpecA induces a
homotopy equivalence

X (A) ' MapFun(CAlgcn,S)(SpecA,X ) → MapFun(CAlgcn,S)(SpfA,X ).

It can be prove that this is equivalent to say that the canonical map

X (A) → lim
←n

X (A/mn)

is a homotopy equivalence.



Higher Étale Sheaves
Let C be a∞-category equipped with a Grothendieck topology T for the details of
Grothendieck topology on an∞-category), andF : Cop → S be a functor, we sayF is
an T -sheaf if for any object C ∈ C, and a T cover sieve {Ui → C} ,F(C) is the limit of
the diagram

Tot : ∆op → S, [n] 7→
⨿

F(Ui1,in)

The following theorem gives a relation between an étale sheaf and its restriction to
discrete case.

Proposition

Let X : CAlgcn → S be a functor which is nilcomplete, infinitesimally cohesive,
andadmits a contangent complex. Then the following conditions are equivalent:

1. The functor X is a sheaf with respect to the étale topology,
2. The functor X |CAlg♡ is a sheaf with respect to the étale topology.



Proof
Suppose that we already know that X |CAlg♡ is a sheaf with respect to the étale
topology. We wish to prove that X : CAlgcn → S is an étale sheaf.

étale is a local condition, so we only need X |CAlgétR
is an étale sheaf.

nilcomplete sheaf, so we only need Xτ≤nR : CAlgetτ≤nR → S,A 7→ X (τ≤nA) is étale.
The case n = 0 follows from the assumption, now assume it is true for n − 1.
R is a square-zero extension of R′ = τ≤n−1R byM = Σn(πnR),

τ≤nR //

��

τ≤n−1R

��
τ≤n−1R // τ≤n−1R ⊕ ΣM

We define two functors Yτ≤n−1R,Zτ≤n−1R : CAlgétτ≤nR → S by the formula

Yτ≤n−1R(A) = X (A ⊗τ≤nR τ≤n−1R) = X (τ≤n−1A)

Zτ≤n−1R(A) = X (A ⊗τ≤nR (τ≤n−1R ⊕ ΣM)) = X (τ≤n−1A ⊕ (A ⊗τ≤nR M)).



By the infinitessimally cohesiveness of X, we then have a pullback diagram of
functors

Xτ≤nR
//

��

Yτ≤n−1R

��
Yτ≤n−1R

// Zτ≤n−1R

Yτ≤n−1R is an étale sheaf, so it is enough to prove that Zτ≤n−1R is an étale sheaf.
We consider the nature projection Zτ≤n−1R → Yτ≤n−1R, by the fiber principle, it is
enough to prove that each fiber of this functor is an étale sheaf. This is equivalent
to say that:
(*) For every étale τ≤nR-algebra A, and every point η ∈ X (τ≤n−1A), the functor

F : CAlgétA → S defined by

B 7→ fib(X (τ≤n−1B ⊕ (A ⊗τ≤nR M)) → X (τ≤n−1B))

is an étale sheaf. But by the definition of cotangent complex of LX , we find that

F(B) = MapModτ≤n−1A
(η∗LX ,B ⊗R M).

It then follows from thatHom and⊗ satisfying étale descent.
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Local-to-Global Principle
F or any chain complexM ∈ DZ, we have

M //

��

∏
pM

∧
p

��
Q⊗M // Q⊗p

∏
pM

∧
p

which is a homotopy pullback square, whereM∧p denote the derived p-completion
(p-local and Exti(Q,M∧p ) = 0, for i = 0, 1).
DQ: The derived category ofQ-vector spaces.
(DZ)

∧
p : The category of derived p-complete complexes of abelian groups.
(DZ)

∧
p is compactly generated by Z/p.

The only proper localizing subcategory of(DZ)
∧
p is (0).

The irreducible blocks ofDZ: {DQ and (DZ)
∧
p for p prime}.

There is a map ϕ : S → HZ,

Sp ' ModS0(Sp) ϕ∗
−→ ModHZ(Sp) ' DZ

Question: What is the inverse image of the irreducible building block (DZ)
∧
p ？



Morava E-theories andMorava K-theories
Let G0 be a formal group over a perfect field k with characteristic p, then a
deformation of G0 to R is a triple (G, i,Ψ), where G is a formal group over R,
i : k → R/m,Ψ : π∗G ∼= i∗G0 is an isomorphism of formal groups over R/m.

Theorem (Lubin-Tate，1966)

There is a universal formal group G over RLT = W (k)[[v1, · · · , vn − 1]] in the
following sense: for every infinitesimal thickening A of k, there is a bijection

Hom/k(RLT ,A) → Def(A).

There is a spectrum E(n) calledMorava E-theory, whose homotopy group is

π∗E(n) = W (k)[[v1, · · · , vn−1]][β±1],

This is a even spectrum K (n) calledMorava K-theory, whose homotopy groups is

π∗K (n) ∼= (π∗MU(p))[v−1n ]/(t0, t1, · · · tpn−2, tpn , · · · ) ∼= Fp[v±1n ]



Thick Subcategories
We say that C ⊂ Sp is thick if it contains 0, closed under fibers and cofibers, and every
retract of a spectrum belongs to C also belongs to C.
Thick subcategories of Sp (Hopkins-Smith，1988-1996)

P2,∞ P3,∞ · · · P3,∞ · · ·
...

...
...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·
P2,n P3,n · · · Pp,n · · ·
...

...
...

P2,2 P3,2 · · · Pp,2 · · ·
P0,1

P0,1 = ker(SH c → SH c
Q
∼= Db(Q)), Pn.∞ = ker(SH c → SH c

(p)).
Pp,n = ker(SH c → SH c

(p) → ModFp[v±1
n−1]

) of localization at p and Kp,n−1.



Spectral Deformations of p-Divisible Groups

G0 be a p-divisible group over R0. A deformation of G0 along ρA : A → R0 is a pair
(G, α), where G is a spectral p-divisible group over A and α : G0 ' ρ∗AG .

Theorem (Lurie '18)

There exists a connective E∞-ring RunG0
with a morphism ρ : RunG0

→ R0, and a
deformation G of G0 with the following properties:

RunG0
is Noetherian, π0(ρ) : π0(RunG0

) → R0 is surjective, and RunG0
is complete

with respect to the ideal ker(π0(ρ)).
For other ρA : A → R0 . The extension of scalars induces an equivalence of
∞-categories

MapCAlg/R0
(RunG0

,A) → DefG0(A, ρA).

We refer to RunG0
as the spectral deformation ring of the p-divisible group G0.



Orientations
Definition

A preorientation of an 1-dimensional formal group G over a E∞-ring R is a map

e : S2 → Ω∞G(τ≥0R)

of based spaces, where the based points goes to the identity of the group struc-
ture.

An orientation of a formal group is a preorientation e whose Bott map is an
equivalence.

Theorem (Lurie '18)

Then there exists an E∞-ring DG and e ∈ Or(XDG ), such that for other R′ ∈
CAlgR

MapCAlgR(DG ,R′) → Or(GR′).

We refer toDX as the orientation classifer.



Orientation Deformation Rings

Let G0 be a nonstationary p-divisible group over a Noetherian Fp-algebra. Let G be the
universal deformation of G0, and RorG0

denote the orientation classifier for the
underlying formal group G◦, we refer RorG0

as the orientation deformation ring.

Theorem (Lurie，18)

1. The homotopy groups of RorG0
concentrated in even degrees, and

RLT = RclG0
∼= π0(RorG0

).
2. For any adic E∞-ring A, the mapping space

MapCAlgadcpl
(RorG0

,A) = DeforG0
(A)

classifying triples (G, α, e), where G is a deformation of G0 to A, α is an
equivalence class of G0-taggings of A , and e is an orientation of the
identity component of G◦.



Lurie'sTheorem
Theorem (Lurie，2010-2018)

LetMn
pd denote themoduli stack of one dimensional height n p-divisible groups,

then there is a sheaf of E∞-ringsOTop on the étale site, such that for any

E := OTop(SpecR G→ Mn
pd)

we have
Spfπ0ECP∞

= G0

where G0 is the formal part of the p-divisible group G.

1. Ĝ0 is a formal group over k, viewed as an identity component of a connected
p-divisible group G0, then EG0 = LKnRorG0

is just Morava E-theory.
2. Topological automorphic forms: OTop on PEL Shimura stacks ( moduli stacks of
abelian varieties with the extra structure of polarization, endomorphisms, and
level structures) which associated to a rational form of the unitary group
U(1,n − 1).



Elliptic Cohomology
An elliptic cohomology consists of triples (E ,C , ϕ), where E is an even periodic
spectrum, C is an elliptic curve C over π0E , ϕ : GE ∼= Ĉ .

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheafOtmf of E∞-ring spectra over the stackMell for the étale topol-
ogy. For any étale morphism f : Spec(R) → Mell , there is a natural structure of
elliptic spectrum (Otmf (f ),Cf , ϕ), satisfying π0Otmf (f ) = R, andCf is a general-
ized elliptic curve over R classified by f.

There exists a nonconnective spectral Deligne-Mumford stackMor
ell such that

MapSpDMnc (SpétR,Mor
ell)

∼= Ellor(R)≃

The étale topos U ofMell is the full subcategory of the underlying toposX ofMs
ell .

We have a map ϕ : Mor
ell → Ms

ell , we consider the direct image sheaf ϕ∗OMor
ell
,

which is sheaf of E∞-rings onX . So we get a functorOTop
Mell

: Uop → CAlg. This
construction can be viewed as a construction of elliptic cohomology.



Moduli Stack of Spectral Elliptic Curves with Derived Level Structures

Theorem (Xuecai Ma，2024)

Mell(A) : CAlgcn → S
R 7−→ Mell(A)(R) = Ell(A)(R)

is representable by a spectral Deligne-Mumford stack.

Proof: Let {R → Ui} be an étale cover of R, andU• be the associate check simplicial
object. We consider the following diagram

Ell(A)(R)
f //

p
��

lim∆ Ell(A)(U•)

q
��

Ell(R)
g // lim∆ Ell(U•).

p is a left fibration between Kan complex, so is a Kan fibration. And the right vertical
map is a pointwise Kan fibration. By picking a suitable model for the homotopy limit
we may assume that q is a Kan fibration as well. We have g is an equivalence .



To prove that f is a equivalence. We only need to prove that for every E ∈ Ell(R), the
map

p−1E ' Level(A,E/R) → lim
∆

Level(A,E ×R U•/U•) ' q−1g(E)

is an equivalence. But this is true due to étaleness of derived level structures.



Higher Categorical Lubin-Tate Towers

We let Level(k,G/R) denote the space of derived (Z/pkZ)h-level structure of a height
h spectral p-divisible group G. We consider the following functor

Mk : CAlgadcpl → S
R → DefLevel(G0,R, k)

whereDefLevel(G0,R, k) is the∞-category whose objects are triples (G, ρ, η)
1. G is a spectral p-divisible group over R.
2. ρ is an equivalence of G0 taggings of R.
3. η : D → G is a derived (Z/pkZ)h-level structure of G.

Theorem (Xuecai Ma，2024)

The functorMk is corepresentable by anE∞-ring which is finite over the unori-
ented spectral deformation ring of G0.



We let Euniv/Run
G0

denote the universal spectral deformation of G0/R0. Suppose that G
is a spectral deformation G0 to R. We have the following equivalence

Level(k,G/R) ' Level(k,Euniv ×RunG0
R) ' MapCAlgad,cplRunG0

(PEuniv/RunG0
,R),

where PEuniv/RunG0
is the universal object of derived level structure functor associated

with the p-divisible group Euniv/RunG0
. Then we consider the following moduli problem

CAlgadcpl → S, R 7→ MapCAlgad,cplR0
(PEuniv/RunG0

,R).

The spaceMapCAlgad,cplR0
(PEuniv/RunG0

,R) can viewed the∞-categories of pairs (α, f ),
where

α : RunG0
→ R

classifies map a spectral p-divisible group G, which is a deformation of G0, that is
α = (G, ρ), and f ∈ MapCAlgad,cplRunG0

(PEuniv/RunG0
,R) = Level(k,Euniv ×RunG0

R) is a derived

level structure of G/R. So we have PEuniv/RunG0
is the desired spectrum.



Suppose G0 is a p-divisible group of height h over a perfect Fp-algebra R0. We consider
the following functor

Mor
k : CAlgadcpl → S

R → DefLevelor(G0,R, k)

whereDefLevelor(G0,R, k) is the∞-category spanned by those quaternions
(G, ρ, e, η)
1. G is a spectral p-divisible group over R.
2. ρ is an equivalence class of G0-taggings of R.
3. e is an orientation of the identity component of G.
4. η : D → G is a derived (Z/pkZ)h-level structure of G/R.

Theorem (Xuecai Ma，2024)

The functorMor
k is corepresentable by an E∞-ring JLk , where JLk is a finite

RorG0
-algebra, RorG0

is the orientation deformation ring of G0.



We call this spectrum JLk the Jacquet-Langlands spectrum. It is easy to see that this
JLk admit an action of GLh(Z/pkZ)× Aut(G0). When k varies, we have a tower

SpétJLk

��
SpétJLk−1

��
· · ·

��
SpétJL0.

We call this tower higher categorical Lubin-Tate tower.



Topological Lifts of Power Operation Rings ofMorava E-theories

Theorem (Strickland，1997-1998)

Deformations of Frobenius is equivalent to deformations with fixed order
subgroups.
There exists a universal object A[r] of height r deformations of Frobenius.
A[r] ∼= E0(BΣpr )/I , where I is the transfer ideal.

For the power operation Rk(X ) → Rk(X × BΣm). When x = ∗, we have

π0R → E0(BΣpr )/I ⊗ π0R = A[r]⊗ π0R

This make π0R becomes a Γ-module, where Γ is the dual of A[r] (Rezk, 11).



A[r] corepresents the following moduli problem

M0,r : CAlg♡k → S
R → Def(G0,R, pr)

whereDef(G0,R, pr) consists of pairs (G,H), where G is an deformation G0 to R, and
H is a rank pr subgroup of G.

Proposition (Xuecai Ma，2024)

For every integer r ≥ 1, there exists a E∞-ring En,r , such that π0En,r = Ar .

For the formal group G0 over a field k of characteristic p. We just consider the functor
CAlgadcpl → S by sending an E∞-ring R to quadruples (G, ρ, e, η), where (G, ρ) is
spectral deformation of G0 to R. e is an orientation of G◦, the identity component G,
and η ∈ Level0(k,G/R) is a derived level structure. Using the same argument in full
level structure and the fact Level0,kG/R is representable.



Further Problems

1. Computations of homotopy groups of higher categorical Lubin-Tate towers.
2. Computations of JL-theory on certain spaces, such as BΣn.
3. The relation between JL and the choosing moduli problems.
4. Representation theory in Spectral Algebraic Geometry.
5. Let JL be the ℓ-adic complete Jacquet-Langlands spectrum, and X be a
spectrum with an action ofGn. We conjecture that the function spectrum
F (X ,JL) admits an action of GLn(Zp).

6. Find certain resolutions by using the above correspondence.



Thanks for Listening !
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