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Moduli Spaces

Each point in this space represents

an object in a certain category C

Geometric objects: Vector Spaces, Topological Spaces,

Manifolds, Varieties, Schemes, Stacks, Derived Stacks



Examples

. The Teichmiiller space parametrizes complex structures of a surface up to isotopy.

. Hilbert Schemes, relative Cartier divisors, Chow schemes

. My of elliptic curves, M, of genus g algebraic curves for g > 2.

. Mcy of polarized Calabi-Yau varieties, M of K-stable Fano varieties.

. QCoh, 4(C) and Bun, 4(C) for C be a smooth, connected, and projective curve
over a field k.

6. The moduli space of G-bundles with flat connections over a Riemann surface

(phase spaces of G-Chern-Simons theory).

QG = W N~

7. The Hitchin moduli space of Higgs bundles over an algebraic curve.

8. The moduli space of monopoles.
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Derived Moduli Spaces

&= The hidden smoothness principle refers to the conjectural picture envisioned in
1980s by Deligne, Drinfeld, Beilinson, Kontsevich that moduli spaces in algebraic
geometry which are often singular, should be just truncations of a moduli spaces
in some derived sense.

= These moduli spaces should be smooth, and this property is lost due to
truncation. The derived moduli spaces were realized in derived algebraic
geometry.

Algebraic Geometry Derived Algebraic Geometry

Commutative rings | Simplicial commutative rings, E.-rings, CDGA

Schemes, Stacks Derived Schemes, Derived Stacks
Hom(X,Y) € Set Map(X,Y) € S A
Sch € Cat dSch € Caty




Higher Algebra

A stable homotopy theory is a presentable symmetric monoidal stable co-category
(C, ®,1) such that the tensor product commutes with all colimits. (simplicial rings, Sp,
D(R))

1. Map(X,Y) e S

2. Ho(C) is a symmetric monoidal triangulated category.

3. There is an equivalence

4. We can define homotopy groups
mE = [X", E].

5. CAlg(C) C Fun(Fin,,C) consists of those M, such that
{M(p") : M({n)) — M(1)}1<i<, determines an equivalence M((n)) — M({1))".

6. We will say that M € Mod, is flat (étale, finite flat) if the following conditions A
holds

B 7oM is flat(étale, finite flat) over myA.
G 7TnA ®7r0A 7TOM = 7TnM
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Derived Stacks
1. The category of derived affine schemes over k is
Schaffine .— (CAlge™)P.
2. The category of derived prestack is
PrStk := Fun(((Sch)?ne)op S).
3. The category of derived stack is
Shvg(Sch2ffine)

4. f : X; — X, in Stk is k-representable if for any § € Sch*"® and § — Xy,
S X x, &) is representable by a (k — 1)-Artin stack.

5. Stk¥Arin is the category consists of those X’ satisfies
1. The diagonal map X — X x X is (k-1)-representable. A
2. There exists Z € Stk*"D =A™ and amap f : Z — X which s
(k — 1)-representable, which is smooth and projective.

6. Stack? A" = Sch ¢ Stack! AR ... J(



Spectral Stacks

Definition

A nonconnective spectral Deligne-Mumford stack is a spectrally ringed co-topos
X = (X, Ox) which locally likes SpétA, for an E., ring A. We say X is a spectral
Deligne-Mumford stack, if all such A is connective.

1. We say X = (X, Oy) is a n-truncated Deligne-Mumford stack if the structure
sheaf Oy is n-truncated.

2. We say X = (X, Oy) is a spectral Deligne-Mumford n-stack if X(Ry) is
n-truncated for Ry a commutative ring. A spectral algebraic space is a
Deligne-Mumford 0-stack.
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Recognition Criterion

Theorem ﬂ]ﬁ

A spectrally ringed oo-topos (X,Oy) is a nonconnective spectral Deligne-
Mumford stack if and only if it satisfying following conditions:

1. The underlying ringed topos (X7, myOy) is a classical Deligne-Mumford
stack.

2. The canoncial geometric morphism ¢, : X — Shvs(X'") is étale.
3. The homotopy group 7,0y is a quasi-coherent sheaf on (X", 19Oy ).
E 4. Oy is a hypercomplete sheaf.




Spectral Varieties and Spectral p-Divisible Groups

Definition

A spectral variety X over an E,,-ring R is a nonconnective spectral Deligne-
Mumford stack X, such that 70X — SpetT>(R is flat, proper, locally almost of
finite presentation, geometrically reduced and geometrically connected.

&8 Abelian varieties over R : commutative monoidal objects of Var(R).

& Spectral elliptic curves over R: spectral abelian varieties of dimension 1 over R.

Definition Iﬁ

)P — FFG(A) with the

A height h p-divisible group over A is a functor X : (Abfin
following conditions

1. X(0) is trivial.
2. X send exact sequence to fiber sequence. A
E 3. X(M) has degree | M|" over A for a finite p-group M.
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Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X /S, a derived relative Cartier divisor is a
morphism D — X such that D — X is a closed immersion, the ideal sheaf of D is a line
bundle over X, and the morphism D — Sis flat, proper and locally almost of finite
presentation.

Theorem (Xuecai Ma, 2024) 11%’%

Suppose that E is a spectral algebraic space over a connective E.,-ring R, such
that E — R is flat, proper, locally almost of finite presentation, geometrically
reduced, and geometrically connected. Then the functor

CDiVE/R : CAlg%n — S
R~ CDiv(Ep /R)

isrepresentable by a spectral algebraic space which is locally almost of finite pre- A

E sentation over R.

J(



Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R
is a relative Cartier divisor D — E satisfying its restriction to the heart comes from an
ordinary A-level structure.

Theorem (Xuecai Ma, 2024) 11%’%

For a spectral elliptic curve E over a connective E,-ring R, the functor

Levelg/p @ CAlgg' — S
R+ Level(A, Ep /R)

E is representable by an affine spectral Deligne-Mumford stack.

o



Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived (Z/p*Z)"-1evel structure of
G is a derived (Z/p*Z)"-level structure

¢:D— G[pk]

of G[p*]. We let Level(k, G/R) denote the co-groupoid of derived (Z/p*Z)"-level
structures of G/R.

Theorem (Xuecai Ma, 2024) 11%’%

Suppose G is a spectral p-divisible group of height & over a connective E,-ring
R. Then the functor

Level’é/R :CAlgy* -+ S; R — Level(k, G /R))

E is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPé R

S



Formal Moduli Problems

A formal moduli problem is a functor X : (CAlg)ﬁrtin — & satisfying the following two
conditions:
1. X(k) is contractible.

2. X perserves pull-back along small morphisms.

Theorem ilﬁ

Ema (Pridham-2010, Lurie-2011) If k is a field of characteristic zero, there is an
equivalence of co-categories

dgLie;, — Moduli.

ma (Brantner-Mathew, 2019) If k is a field of positive characteristic, there is an
equivalence of co-categories

Moduliga >~ Algpier |

E between formal moduli problems and partition Lie algebra k.




Representability Theorem

Spectral Artin Representability Theorem (Lurie, 2004-2018) @

Let M : CAlg™ — S be a functor and R is a Noetherian E,-ring such that moR
is a Grothendieck ring. If f : M — SpecR is a natural transformation. If we have

1. M(Ry) is n-truncated for any discrete commutative ring Ry.
2. M is an étale sheaf.

3. M admits a connective cotangent complex Ly,.

4. M is nilcomplete, integrable and infinitesimally cohesive.

5. f is locally almost of finite presentation.

Then M is representable by a spectral Deligne-Mumford stack which is locally
E almost of finite presentation over R.




Cohesive
Let X : CAlg™ — S be a functor. We will say that X is

B cohesive, if for every pull-back diagram on the left in CAlg™ such that mpA — 7o B and
moB' — myB are surjective, the induced diagram on the right is a pullback square in S.

N A X(A) —= X(A)

l lf l y lxm

B—5%-B X(B') —=X(B)
&8 infinitesimally cohesive, if for every pull-back diagram on the left in CAlg™ such that
moA — moB and mgB’' — 7B are surjective whose kernel are nilpotent ideals in mgA and
7B, the induced diagram is a pull-back square in S.

A——>A X(A') —= X(4)
n Ll &
B_f.p X(B) ~&> x(B)

J(



Nilcomplete and Integrable

Let X : CAlg™ — S be a functor. We will say that X is
1. nilcomplete if for every connective E.,-ring R, the canonical map

X(R) = limX(r<uR)

is a homotopy equivalence.

2. integrable if for a local Noetherian E.,-ring which is complete with respect to its
maximal ideal m C mA, the inclusion of functors SpfA — SpecA induces a
homotopy equivalence

X(A) = MapFun(CAlgcn,S) (SpeCAv X) — MapFun(CAlgcn,S) (Span X) :
It can be prove that this is equivalent to say that the canonical map
3 n
X(A) = LimX (A/m") A

is a homotopy equivalence.

J(



Higher Etale Sheaves

Let C be a co-category equipped with a Grothendieck topology T for the details of
Grothendieck topology on an co-category), and F : C°? — S be a functor, we say F is
an 7 -sheaf if for any object C € C, and a 7 cover sieve { U; — C}, F(C) is the limit of
the diagram

Tot: A” =S, [n] = [[F(Ui.i)

The following theorem gives a relation between an étale sheaf and its restriction to

discrete case.
Proposition @

Let X : CAlg™ — S be a functor which is nilcomplete, infinitesimally cohesive,
and admits a contangent complex. Then the following conditions are equivalent:

1. The functor X is a sheaf with respect to the étale topology, A

E 2. The functor X|,, Lo isa sheaf with respect to the étale topology.

J(



Proof

Suppose that we already know that X|,, ¥ is a sheaf with respect to the étale
topology. We wish to prove that X : CAlg™ — S is an étale sheaf.

=8 étale is a local condition, so we only need X| Al is an étale sheaf.
R

ma nilcomplete sheaf, so we only need X;_ g : CAlgy. p — S, A X(7<,A) is étale.

&= The case n = 0 follows from the assumption, now assume it is true for n — 1.

E& R is a square-zero extension of R = 7<,_1Rby M = X"*(7,R),

TgnR —— TgnflR

| i

T<n-1R——7<41R® XM
We define two functors Yoo, iR Zro, \R: CAlgiin r — S by the formula
Yo, 1r(A) = X(A®r_,r T<n—1R) = X(7<p-14)

Zr 1R(A) = X(A®r_ g (T<n-1ROXM)) = X(T<n-1A® (A ®r_,r MB(



g3 By the infinitessimally cohesiveness of X, we then have a pullback diagram of
functors

XTS,,R YTSn—lR
YTgn_lR > ZTSn—lR

Y;_, ,ris an étale sheaf, so it is enough to prove that Z, <n_1R1San étale sheaf.

&= We consider the nature projection Z- R Y R by the fiber principle, it is

enough to prove that each fiber of this functor is an étale sheaf. This is equivalent

to say that:
(*) For every étale 7<, R-algebra A, and every point ) € X(7<,_14), the functor

F : CAlgd — S defined by
B~ fib(X(7<p-1B @ (A®r_,g M)) = X(T<p-1B))
is an étale sheaf. But by the definition of cotangent complex of Ly, we find that A
F(B) = MapMod@n_lA (n"Lx,B®&gr M).

It then follows from that Hom and ® satisfying étale descent. J(
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Local-to-Global Principle

F or any chain complex M € Dz, we have

Af [T, M

which is a homotopy pullback square, where Mr/,\ denote the derived p-completion
(p-local and Ext/(Q, M) = 0,fori = 0,1).
Dq: The derived category of Q-vector spaces.
(DZ);\ : The category of derived p-complete complexes of abelian groups.
ma (Dgz)), is compactly generated by Z/ p.
ma The only proper localizing subcategory of(Dz)y, is (0).
ma The irreducible blocks of Dz: {Dg and (Dz)), for p prime}.
Thereisamap ¢ : S — HZ, A

Sp ~ Modgo (Sp) RN Modpz(Sp) ~ Dz,
Question: What is the inverse image of the irreducible building block (D7), ? A



Morava E-theories and Morava K-theories

Let Gy be a formal group over a perfect field k with characteristic p, then a
deformation of Gy to Ris a triple (G, i, ¥), where G is a formal group over R,
i:k— R/m,V: "G = i*Gy is an isomorphism of formal groups over R/ m.

Theorem (Lubin-Tate, 1966)

There is a universal formal group G over Ry = W(k)[[v1,-- , v, — 1]] in the
following sense: for every infinitesimal thickening A of k, there is a bijection

&LL Hom i (Rrr, A) — Def(A).

There is a spectrum E(n) called Morava E-theory, whose homotopy group is
W*E(I’l) = W(k)[[ylv R Vn—l]][ﬁil]’

This is a even spectrum K (n) called Morava K-theory, whose homotopy groups is A

Fp[”;jfl] J
S

I

T K(n) = (W*MU(p))[v,jl]/(to, b, bpn_g, tn, - +)



Thick Subcategories
We say that C C Sp is thick if it contains 0, closed under fibers and cofibers, and every
retract of a spectrum belongs to C also belongs to C.
Thick subcategories of Sp (Hopkins-Smith, 1988-1996)

P2,oo PS,oo e P3,oo te

P2n1 Ps3nt1 e Ppnt1---

Pon Psn Ppn---

Poo Pz e Ppo--
Poa

2

ma Py = ker(SH® — SHE = DP(Q)), Pp.oo = ker(SH® — SHE,).
=a P, , = ker(SH® — SH(CP) — MOde[U:tll]) of localization at p and K}, 1. Py



Spectral Deformations of p-Divisible Groups

Gy be a p-divisible group over Ry. A deformation of Gy along p4 : A — Ry is a pair
(G, ), where G is a spectral p-divisible group over Aand « : Gy ~ p}G.

Theorem (Lurie '18) @

There exists a connective Ex-ring R’ with a morphism p : R¢" — Ry, and a
deformation G of Gy with the following properties:

ma R is Noetherian, mo(p) : mo(R¢) — Ry is surjective, and Rg is complete
with respect to the ideal ker(mo(p)).
&= For other py : A — Ry . The extension of scalars induces an equivalence of
oo-categories
MapCAlg/RO (RGy,A) — Defg, (A, pa).

E We refer to R as the spectral deformation ring of the p-divisible group Go. A

S



Orientations

Definition

e: 52 — QOOG(TZ()R)

E ture.

A preorientation of an 1-dimensional formal group G over a E,,-ring R is a map

of based spaces, where the based points goes to the identity of the group struc-

&

EE An orientation of a formal group is a preorientation e whose Bott map is an
equivalence.

Theorem (Lurie '18)

CAlgp
Mapcag,(Pa, R) — Or(Grr).

E We refer to Dy as the orientation classifer.

Then there exists an E,,-ring D and e € Or(Xp,), such that for other R €



Orientation Deformation Rings

Let Gy be a nonstationary p-divisible group over a Noetherian [F,-algebra. Let G be the
universal deformation of Gy, and Rgg denote the orientation classifier for the
underlying formal group G°, we refer R, as the orientation deformation ring.

Theorem (Lurie, 18) @

1. The homotopy groups of R concentrated in even degrees, and
Rir = R = mo(RY).
2. For any adic E,-ring A, the mapping space

MapCAlg?’fl(Rgg,A) = Defg; (A)

classifying triples (G, «, e), where G is a deformation of Gy to A, v is an
equivalence class of Gy-taggings of A, and e is an orientation of the
E identity component of G°. A




Lurie's Theorem

Theorem (Lurie, 2010-2018) @

Let M;’d denote the moduli stack of one dimensional height n p-divisible groups,
then there is a sheaf of E.-rings OT°P on the étale site, such that for any

E := O™P(SpecR S M)

we have
SpfroECP™ = G°

E where G is the formal part of the p-divisible group G.

1. Gy is a formal group over k, viewed as an identity component of a connected
p-divisible group Gy, then Eg, = Lk, R, is just Morava E-theory.

2. Topological automorphic forms: OT°P on PEL Shimura stacks ( moduli stacks of A
abelian varieties with the extra structure of polarization, endomorphisms, and
level structures) which associated to a rational form of the unitary group

U(l,n—1). S



Elliptic Cohomology

An elliptic cohomology consists of triples (E, C, ¢), where E is an even periodic
spectrum, C is an elliptic curve C over moE, ¢ : Gg = C.

Theorem(Goerss-Hopkins-Miller-Lurie) @

There is a sheaf O, of Ew-ring spectra over the stack My for the étale topol-
ogy. For any étale morphism f : Spec(R) — My, there is a natural structure of
elliptic spectrum (Oyyf (f), Cr, ¢), satisfying moO s (f) = R, and Cy is a general-
&lized elliptic curve over R classified by {.

EE There exists a nonconnective spectral Deligne-Mumford stack M, such that
Mapg,pine (SPEtR, on = EN(R)~

G The étale topos U of My is the full subcategory of the underlying topos X" of M3,
We have a map ¢ : MZ;, — M:,,, we consider the direct i 1mage sheaf ¢.O M A

which is sheaf of E..-rings on X'. So we get a functor O, Top M,y - UP — CAlg. This
construction can be viewed as a construction of elliptic cohomology. 2



Moduli Stack of Spectral Elliptic Curves with Derived Level Structures

Theorem (Xuecai Ma, 2024) ilﬁ

Ma(A) : CAlg™ — S
R— Meu(A)(R) = EN(A)(R)

E is representable by a spectral Deligne-Mumford stack.

Proof: Let {R — U;} be an étale cover of R, and U, be the associate check simplicial
object. We consider the following diagram

EI(A)(R) — > lima EI(A)(UL)
) lq
Ell(R) & . lima EI(UL). A
p is a left fibration between Kan complex, so is a Kan fibration. And the right vertical

map is a pointwise Kan fibration. By picking a suitable model for the homotopy limi
we may assume that ¢ is a Kan fibration as well. We have g is an equivalence . «/¢




To prove that f is a equivalence. We only need to prove that for every E € Ell(R), the
map
p 'E ~ Level(A, E/R) — ligl Level(A, E xg Us/Us) ~ g *g(E)

is an equivalence. But this is true due to étaleness of derived level structures.

J(



Higher Categorical Lubin-Tate Towers

We let Level(k, G/R) denote the space of derived (Z/p*Z)"-level structure of a height
h spectral p-divisible group G. We consider the following functor

M @ CAlgls — S

R — DefLevel(Gy, R, k)
where DefLevel(Gy, R, k) is the co-category whose objects are triples (G, p, 1)
1. G is a spectral p-divisible group over R.
2. pis an equivalence of Gy taggings of R.
3.n: D — Gisaderived (Z/p*Z)"-level structure of G.

Theorem (Xuecai Ma, 2024)

The functor M is corepresentable by an E -ring which is finite over the unori-
ented spectral deformation ring of Gy.

S



We let Eypiv/ RuG;‘ denote the universal spectral deformation of Gy/Ry. Suppose that G
is a spectral deformation Gy to R. We have the following equivalence

Level(k, G/R) ~ Level(k, Eyniy X pun R) ~ MapcAIgad,cpl(PEumv/Rg(n) ,R),
it

where Pg, ./ Run 18 the universal object of derived level structure functor associated
0
with the p-divisible group E, i,/ Rg. Then we consider the following moduli problem

CAIgcpl — 8, R+— MapCAlgzd,cpl(PEuniv/R(u}g y R) .
0

The space Map, Alger! (PE, i/ ren » R) can viewed the co-categories of pairs («, f),
R 0

where
o Rgg’ — R

classifies map a spectral p-divisible group G, which is a deformation of Gy, that is
a=(G,p),andf € Map, Al cpl(PEumu /RS R) = Level(k, Eyniy ¥ R R) is a derived A

level structure of G/R. So we have PEyin/ R is the desired spectrum.

J(



Suppose G is a p-divisible group of height £ over a perfect F,-algebra Ry. We consider
the following functor

MY 1 CAlgls — S

R — DefLevel™ (G, R, k)

where DefLevel” (Gy, R, k) is the co-category spanned by those quaternions

(G7 p7 e? 77)
1. Gis a spectral p-divisible group over R.

2. pis an equivalence class of Gy-taggings of R.
3. eis an orientation of the identity component of G.
4.7 : D — Gisaderived (Z/p*7Z)"-level structure of G/R.

Theorem (Xuecai Ma, 2024)

The functor M{" is corepresentable by an E.-ring J L, where J Ly is a finite A
RY -algebra, R{; is the orientation deformation ring of Go.

J(



We call this spectrum J L the Jacquet-Langlands spectrum. It is easy to see that this
J L admit an action of GL,(Z/p*7Z) x Aut(Gp). When k varies, we have a tower

Spét T L

SpétT L1

SpétJ Lo.

We call this tower higher categorical Lubin-Tate tower.

J(



Topological Lifts of Power Operation Rings of Morava E-theories

Theorem (Strickland, 1997-1998) @

= Deformations of Frobenius is equivalent to deformations with fixed order
subgroups.

ma There exists a universal object A[r] of height r deformations of Frobenius.
E ma A[r] & EY(BS,)/I, where L is the transfer ideal.

For the power operation R¥(X) — R¥(X x BY,,;). When x = *, we have
moR — E°(BX,r)/I ® moR = Alr] ® mR

This make 7o R becomes a I'-module, where I is the dual of A[r] (Rezk, 11). A



A[r] corepresents the following moduli problem

Mo, : CAlg! =S
R — Def(Go, R, p")

where Def(Gy, R, p") consists of pairs (G, H), where G is an deformation G to R, and
H is arank p” subgroup of G.

Proposition (Xuecai Ma, 2024)

For every integer r > 1, there exists a E,,-ring E,, ,, such that moE,, , = A;.

For the formal group Gy over a field k of characteristic p. We just consider the functor
CAIg?gZ — S by sending an E,-ring R to quadruples (G, p, e, ), where (G, p) is

spectral deformation of Gy to R. e is an orientation of G°, the identity component G,

and n) € Levely(k, G/R) is a derived level structure. Using the same argument in full A

level structure and the fact Level(();’;cR is representable.

J(



Further Problems

QL b W N =

. Computations of homotopy groups of higher categorical Lubin-Tate towers.
. Computations of 7 L-theory on certain spaces, such as BY,.

. The relation between 7 £ and the choosing moduli problems.

. Representation theory in Spectral Algebraic Geometry.

. Let J L be the ¢-adic complete Jacquet-Langlands spectrum, and X be a

spectrum with an action of G,. We conjecture that the function spectrum
F(X,J L) admits an action of GL,(Z),).

. Find certain resolutions by using the above correspondence.

J(



Thanks for Listening !
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