Analytic Geometry and Homotopy Groups of the K(n)-Local Spheres

Xuecai Ma

2024.06.18

Our Goal

Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded \mathbb{Q} -algebras

$$\mathbb{Q}\otimes \pi_*L_{K(n)}S^0\cong \Lambda_{\mathbb{Q}_p}(\zeta_1,\zeta_2,\cdots\zeta_n),$$

where the latter is the exterior \mathbb{Q}_p -algebra with generators ζ_i in degree 1-2i.

Rationalization of the K(n)-Local Sphere

Analytic Geometry

Morava E-theories and Morava K-theories

Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) , where G is a formal group over R, $i: k \to R/m$, $\Psi: \pi^*G \cong i^*G_0$ is an isomorphism of formal groups over R/m.

Theorem (Lubin-Tate, 1966)

There is a universal formal group G over $R_{LT}=W(k)[[v_1,\cdots,v_n-1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

$$\operatorname{Hom}_{/k}(R_{LT},A) \to \operatorname{Def}(A).$$

There is a spectrum E_n called **Morava E-theory**, whose homotopy group is

$$\pi_* E_n = W(k)[v_1, \cdots, v_{n-1}][\beta^{\pm 1}],$$

This is a even spectrum K(n) called **Morava K-theory**, whose homotopy groups is

$$\pi_*K(n) \cong (\pi_*MU_{(p)})[v_n^{-1}]/(t_0, t_1, \cdots t_{p^n-2}, t_{p^n}, \cdots) \cong \mathbb{F}_p[v_n^{\pm 1}]$$

Morava Stabilizer Groups

We let G_0 denote a formal group of height n over a perfect field $\overline{\mathbb{F}}_p/\mathbb{F}_p$ The small Morava stabilizer group $\operatorname{Aut}_{\overline{\mathbb{F}}_p}(G_0)$ is the group of automorphism of G_0 with coefficients in $\overline{\mathbb{F}}_p$,

$$\operatorname{Aut}(G_0) = \{ f(x) \in \overline{\mathbb{F}}_p[[x]] : f(G_0(X, Y)) = G_0(f(x), f(y)), f'(0) \neq 0 \}$$

Since G_0 is defined over $\overline{\mathbb{F}}_p$, the Galois group $\operatorname{Gal} = \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ act on G_0 by acting on the coefficients. The Morava stabilizer group \mathbb{G}_n is defined by

$$\mathbb{G}_n = \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \ltimes \operatorname{Aut}(G_0)$$

Theorem (Devinatz-Hopkins, Goerss-Hopkins-Miller)

The Morava stabilizer group acts on E_n , and it givens essential all automorphisms of E_n

$$E_n^{h\mathbb{G}_n} \simeq L_{K(n)} S^0$$

Stable Homotopy Groups of Sphere

Lemma

The K(1)-local sphere $L_{K(1)}S$ is given by the homotopy fiber of the map $\Psi^g-1:\widehat{KU}\to\widehat{KU}$.

$$\pi_{2n}(\widehat{KU}^{\Psi^g-1}) \simeq 0$$

$$\pi_{2n-1}(\widehat{KU}^{\Psi^g-1}) \simeq \mathbb{Z}^p/(g^n-1).$$

By this theorem, we can compute the homotopy group of $L_{K(1)}S$

$$\pi_n L_{K(1)} S = \begin{cases} \mathbb{Z} & n = 0\\ \mathbb{Q}_p / \mathbb{Z}_p & n = -2\\ Z / p^{k+1} Z & n+1 = (p-1) p^k m, p \nmid m\\ 0 & \text{otherwise} \end{cases}$$

Homotopy fixed point spectral sequence

Proposition

There is a homotopy fixed point spectral sequence (descent spectral sequence)

$$E_2^{s,t} = H_{gp}^s(G; \pi_t(X)) \Longrightarrow \pi_{t-s}(X^{hG})$$

similarly for X_{hG} , X^{tG} .

We have $E_n^{h\mathbb{G}_n} \simeq L_{K(n)}S^0$, then we get

$$E_2^{s,t} \cong H^s_{cts}(\mathbb{G}, \pi_t E_n) \Longrightarrow \pi_{t-s} L_{K(n)} S^0.$$

The structure of Morava stabilizer group

For f a formal group law over $\overline{\mathbb{F}}_p$.

End
$$f = \{g(t) \in tR[[t]] \mid f(g(x), g(y)) = gf(x, y)\}$$

Proposition

End(f) is a noncommutative local ring: The collection non-invertible elements is the left ideal generated by $\pi(t) = \nu(t^p)$, where $\nu f^p(x,y) = f(\nu(x),\nu(y))$.

Let $D = \mathbb{Q} \otimes \text{End}(f)$.

Lemma

D is a central division algebra over \mathbb{Q}_p . End $(f) = \{x \in D : \nu(x) \ge 0\}$.

Morava Stabilizer Group

$$\det: \mathbb{G}_n \to \mathbb{Z}_p^{\times} \quad \det: \mathbb{S}_n \to \mathbb{Z}_p^{\times}$$

Composition with $\mathbb{Z}_p^{\times}/\mu \cong \mathbb{Z}_p$.

$$\zeta_n:\mathbb{G}_n\to\mathbb{Z}_p.$$

Let $\mathbb{G}_n^1 = \ker \zeta_n$, we have

$$\mathbb{G}_n \cong \mathbb{G}_n^1 \rtimes \mathbb{Z}_p, \quad \mathbb{S}_n \cong \mathbb{S}_n^1 \rtimes \mathbb{Z}_p.$$

As a consequence of $\mathbb{G}_n/\mathbb{G}_n^1 \rtimes \mathbb{Z}_p$, there is a equivalence $L_{K(n)}S^0 \simeq (E_n^{h\mathbb{G}_n^1})^{h\mathbb{Z}_p}$.

$$L_{K(n)}S^0 \longrightarrow E_n^{h\mathbb{G}_n^1} \stackrel{\psi-1}{\longrightarrow} E_n^{h\mathbb{G}_n^1} \stackrel{\delta}{\longrightarrow} \Sigma L_{K(n)}S^0.$$

The action of Morava stabilizer group

Let F_n be the universal deformation over $(E_n)_0$ of G_0 . If we have $\alpha=(f,\sigma)\in\mathbb{G}_n$. The universal property of F_n implies that there is ring isomorphism $\alpha_*:(E_n)_0\to(E_n)_0$ and an isomorphism of formal group laws $f_\alpha:\alpha_*F_n\to F_n$. The action can extend to $(E_n)_*\cong\mathbb{W}_n[\![u_1,\cdots,u_{n-1}]\!][u^{\pm 1}]$

- 1. $\alpha = (id, \sigma)$ for $\sigma \in \operatorname{Gal}(k/\mathbb{F}_p)$. Then the action is action of Galois group on \mathbb{W}_n .
- 2. If $\omega \in \mathbb{S}_n$ is a primitive (p^n-1) -th root of the unity, then $\omega_*(u_i) = \omega^{p^i-1}u_i$ and $\omega_*(u) = \omega u$.
- 3. $\psi \in \mathbb{Z}_p^{\times} \subset \mathbb{S}_n$ is the center, then $\psi_*(u_i) = u_i$ and $\psi_* u = \psi u$.

Theorem (Devinatz-Hopkins)

Let $1 \leq i \leq n-1$ and $f = \sum_{j=0}^{n-1} f_j \zeta^j \in \mathbb{S}_n$, where $f_j \in \mathbb{W}_n$. Then modulo $(p, u_1, \cdots u_{n-1})^2$,

$$f_*(u) \equiv f_0 u + \sum_{j=1}^{n-1} f_{n-j}^{\sigma^j} u u_j$$
 $f_*(uu_i) \equiv \sum_{j=1}^i f_{i-j}^{\sigma^j} u u_j + \sum_{j=i+1}^n p f_{n+i-j}^{\sigma^j} u u_j$

Local-to-global Principle

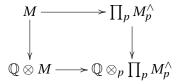
The Hasse square is a pullback square

$$\mathbb{Z} \longrightarrow \prod_{p} \mathbb{Z}_{p}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Q} \longrightarrow \mathbb{Q} \otimes_{p} \prod_{p} \mathbb{Z}_{p}$$

This is the special case of a local-to-global principle for any chain complex $M \in \mathcal{D}_{\mathbb{Z}}$.



which is a homotopy pullback square, where M_p^{\wedge} denote the derived p-completion (p-local and $\operatorname{Ext}^i(\mathbb{Q},M_p^{\wedge})=0$, for i=0,1.)

Rationalization of the K(n)-Local Sphere

Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded \mathbb{Q} -algebras

$$\mathbb{Q}\otimes \pi_*L_{K(n)}S^0\cong \Lambda_{\mathbb{Q}_p}(\zeta_1,\zeta_2,\cdots\zeta_n),$$

where the latter is the exterior \mathbb{Q}_p -algebra with generators ζ_i in degree 1-2i.

Lemma

For all $t \neq 0$ and all $s \in \mathbb{Z}$, we have $H^s_{cts}(\mathbb{G}_n, \mathbb{Q} \otimes \pi_t E_n) = 0$.

Proof: There is a short exact sequence

$$1 \to \mathcal{O}_D^{\times} \to \mathbb{G}_n \cong \mathcal{O}_D^{\times} \rtimes \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to \operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to 1$$

where $\mathcal{O}_{\underline{D}}^{\times}$ is isomorphic to the automorphism group of our choose formal group law \mathbb{G}_n over $\overline{\mathbb{F}}_p$. The center of \mathcal{O}_D^{\times} is isomorphic to \mathbb{Z}_p^{\times} . The central subgroup $\mathbb{Z}_p \subset \mathbb{Z}_p^{\times} \subset \mathcal{O}_D^{\times}$ which can be generated by the element $1+p \in \mathbb{Z}_p^{\times}$. We have the convergent Lydon-Hochschild-Serre spectral sequence

$$H^p(\mathcal{O}_D^{\times}/\mathbb{Z}_p, H^q_{cts}(\mathbb{Z}_p, \mathbb{Q} \otimes \pi_t E_n)) \Longrightarrow H^{p+q}_{cts}(\mathcal{O}_D^{\times}, \mathbb{Q} \otimes \pi_t E_n))$$

The generator acts on $\mathbb{Q} \otimes \pi_t E_n$ by multiplication by $(1+p)^t$. Consider the complex

$$\mathbb{Q} \otimes \pi_t E_n \stackrel{(1+p)^t-1}{\longrightarrow} \mathbb{Q} \otimes \pi_t E_n$$

Since $\mathbb{Q}_p \otimes \pi_t E_n$ is a \mathbb{Q}_p -vector space, when $t \neq 0$ the action by $(1+p)^t - 1$ is invertible, so the complex is acyclic, $H^q_{cts}(\mathcal{O}_D^{\times}, \mathbb{Q} \otimes \pi_t E_n)) = 0$ for $t \neq 0$.

We continue to consider the spectral sequence

$$H^p(\mathbb{G}_n/\mathcal{O}_D^{\times}, H_{cts}^q(\mathcal{O}_D^{\times}, \mathbb{Q} \otimes \pi_t E_n)) \Longrightarrow H_{cts}^{p+q}(\mathbb{G}_n, \mathbb{Q} \otimes \pi_t E_n)),$$

we get $H^s_{cts}(\mathbb{G}_n, \mathbb{Q} \otimes \pi_t E_n) = 0$ for all $t \neq 0$.

Cohomology of Morava Stabilizer Group

Proposition

For every integer $s \geq 0$, the natural map $W = W(\overline{\mathbb{F}}_p) \rightarrow \pi_0 E_n = W[u_1, \dots, u_{n-1}]$ induces a split injection

$$H^{s}_{cts}(\mathbb{G}_n,W)\hookrightarrow H^{s}_{cts}(\mathbb{G}_n,\pi_0E_n)$$

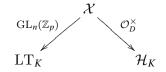
whose complement killed by a power of p. In particular,

$$H^s_{cts}(\mathbb{G}_n, W) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \to H^s_{cts}(\mathbb{G}_n, \pi_0 E_n) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

 $is \ an \ isomorphism.$

Proof:

The cohomology groups $H^i_{cts}(\mathcal{O}_D^{\times}, A^c)$ and $H^i_{cts}(\mathbb{G}_n, A^c)$ are p-power torsion.



This diagram induces an isomorphism in D(Solid):

$$R\Gamma(LT_{K,pro\acute{e}t},\widehat{\mathcal{O}}_{cond}^{+})^{h\mathcal{O}_{D}^{\times}} \cong R\Gamma(\mathcal{H}_{K,pro\acute{e}t},\widehat{\mathcal{O}}_{cond}^{+})^{hGL_{n}(\mathbb{Z}_{p})}$$

We have

$$H^*(R\Gamma(\mathcal{H}_{K,\mathrm{pro\acute{e}t}},\widehat{\mathcal{O}}_{\mathrm{cond}}^+)^{h\mathrm{GL}_n\mathbb{Z}_p})\otimes_W K\cong \Lambda_K(y_1,y_3,\ldots,y_{2n-1})[\epsilon]$$

$$H^*(R\Gamma(\operatorname{LT}_{K,\operatorname{pro\acute{e}t}},\widehat{\mathcal{O}}_{\operatorname{cond}}^+)^{h\mathcal{O}_D^+}) \otimes_W K \cong \Lambda_K(x_1,x_3,\ldots,x_{2n-1})[\epsilon] \oplus ((A^c)^{h\mathcal{O}_D^\times} \otimes_W K)[\epsilon].$$

We then have $H^*_{cts}(\mathcal{O}_D^{\times}, A^c) \otimes_W K = 0$, using the Hochschild-Serre spectral sequence combined with the fact that the cohomological dimension $\mathbb{G}_n/\mathcal{O}_D^{\times} \cong \widehat{\mathbb{Z}}$ is 1, we get $H^i_{cts}(\mathbb{G}_n, A^c)$ is also p-power torsion.

Galois Cohomology of Witt Rings

Lemma

Let $W = W(\overline{\mathbb{F}}_p)$ and K = W[1/p].

- 1. $H^i_{cts}(\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p), W)$ is \mathbb{Z}_p if i = 0, and is 0 otherwise.
- 2. Let \mathbb{G}_n action on K through its quotient $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. There is an isomorphism of graded \mathbb{Q}_p -algebras:

$$H^*_{cts}(\mathbb{G}_n,K)\cong \Lambda_{\mathbb{Q}_p}(x_1,x_3,\ldots,x_{2n-1}).$$

Proof:

- 1. $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) = \widehat{Z}$, so it is enough to prove in degree 1. W is p-adically complete, this is further reducing that $H^1_{cts}(\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p), \overline{\mathbb{F}}_p) = 0$, this is true because $x \mapsto x^p x$ is surjective on $\overline{\mathbb{F}}_p$.
- 2. Consider the spectral sequence

$$H^{i}_{cts}(\operatorname{Gal}(\overline{\mathbb{F}}_{p}/\mathbb{F}_{p}), H^{j}_{cts}(\mathcal{O}_{D}^{\times}, K)) \Longrightarrow H^{i+j}_{cts}(\mathbb{G}_{n}, K)$$

Consider the action of $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ on $H^j_{cts}(\mathcal{O}_D^{\times},K)=H^j_{cts}(\mathcal{O}_D^{\times},\mathbb{Q}_p)\otimes_{\mathbb{Z}_p}W$

The action on the first factor is trivial by the following lemma, and the action on the factor has no higher cohomology by 1. Therefore

$$H^*_{cts}(\mathbb{G}_n,K)\cong H^*_{cts}(\mathcal{O}_D^{\times},\mathbb{Q}_p),$$

then again apply the following lemma.

Lemma

Let G be either of the group $GL_n(\mathbb{Z}_p)$ or \mathcal{O}_D^{\times} . Consider the trivial action of G on \mathbb{Q}_p . There is an isomorphism of graded \mathbb{Q}_p -algebras:

$$H^*_{cts}(G, \mathbb{Q}_p) \cong H^*(\mathrm{Lie}G, \mathbb{Q}_p) \cong \Lambda_{\mathbb{Q}_p}(x_1, x_3, \dots, x_{2n-1}).$$

In the case of $G = \mathcal{O}_D^{\times}$, the outer morphism $\mathrm{ad}\Pi$ (where Π is a uniformizer of D^{\times}) act as the identity on $H^*_{cts}(G,\mathbb{Q}_p)$.

Proof of the Main Theorem

The Devinatz-Hopkins spectral sequence

$$E_2^{s,t} \cong H^s_{cts}(\mathbb{G}, \pi_t E_n) \Longrightarrow \pi_{t-s} L_{K(n)} S^0$$

converges strongly and collapses on a finite page with a horizontal vanishing line. Tensor with \mathbb{Q} , we get a convergent spectral sequence

$$\mathbb{Q} \otimes E_2^{s,t} \cong H^s_{cts}(\mathbb{G}, \mathbb{Q} \otimes \pi_t E_n) \Longrightarrow \mathbb{Q} \otimes \pi_{t-s} L_{K(n)} S^0$$

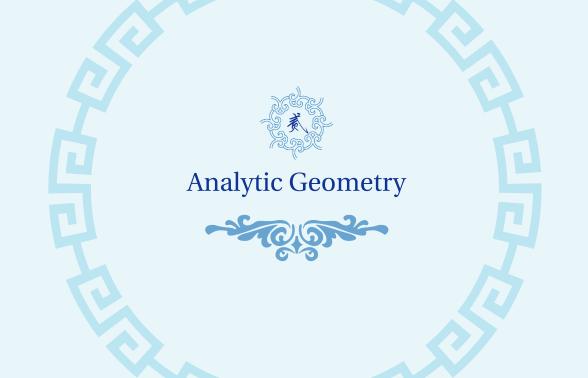
By above lemmas, the E_2 page of the rationalization of the Devinatz-Hopkins spectral sequence only have one nonvansihing line, which is t=0 in the (s,t) coordinate system. So we get an isomorphism

$$H^*_{cts}(\mathbb{G},\mathbb{Q}\otimes\pi_0E_n)\cong\mathbb{Q}\otimes\pi_*L_{K(n)}S^0$$

By the computation of the cohomology groups of Morava stabilizer groups, the left hand side equals to

$$H^*_{cts}(\mathbb{G}, \mathbb{Q} \otimes \pi_0 E_n) \cong H^*_{cts}(\mathbb{G}, \mathbb{Q} \otimes W) \cong \Lambda_{\mathbb{O}_n}(x_1, x_2, \dots, x_n).$$

with x_i in cohomological degree 2i - 1.



The Langlands correspondence in number theory (Langlands 67) is a conjectural correspondence (a bijection subject to various conditions) between

- 1. n-dimensional complex linear representations of the Galois group $\mathrm{Gal}(\bar{F}/F)$ of a given number field F
- 2. certain representations-called automorphic representations of the n-dimensional general linear group $GL_n(\mathbb{A}_F)$ with coefficients in the ring of adeles of F, arising within the representations given by functions on the double coset space $GL_n(F) \setminus GL_n(\mathbb{A}_F)/GL_n(\mathcal{O})$.

moduli spaces of shtukas	Shimura varieties
moduli spaces of local shtukas	local Shimura varieties
Drinfled's upper half spaces	Lubin-Tate towers

Shtukas over Function Fields

Definition

Let S/\mathbb{F}_p be a scheme. A shtuka of rank n with legs $x_1, \ldots, x_m \in X(S)$ is a rank n vector bundle \mathcal{E} over $S \times_{\mathbb{F}_p} X$ together with an isomorphism

$$\phi_{\mathcal{E}}: (\operatorname{Frob}_{S})^{*}\mathcal{E}|_{S \times_{\mathbb{F}_{p}} X \setminus \bigcup_{i} \Gamma_{x_{i}}} \cong \mathcal{E}|_{S \times_{\mathbb{F}_{p}} X \setminus \bigcup_{i} \Gamma_{x_{i}}}$$

on $S \times_{\mathbb{F}_p} X \setminus \bigcup_i \Gamma_{x_i}$, where $\Gamma_{x_i} \subset S \times_{\mathbb{F}_p} X$ is the graph of x_i .

Let \widehat{X} be the formal completion of X at one of its \mathbb{F}_p rational points, so that $\widehat{X} \cong \operatorname{Spf}\mathbb{F}_p[\![T]\!]$. A local shtuka of rank n over an adic space S/\mathbb{F}_p with legs $x_1,\ldots,x_m\in \widehat{X}(S)$ is a rank n vector bundle \mathcal{E} over $S\times_{\mathbb{F}_p}\widehat{X}$ together with an isomorphism

$$\phi_{\mathcal{E}}: (\mathrm{Frob}_S)^* \mathcal{E}|_{S \times_{\mathbb{F}_p} \widehat{X} \setminus \cup_i \Gamma_{x_i}} \cong \mathcal{E}|_{S \times_{\mathbb{F}_p} \widehat{X} \setminus \cup_i \Gamma_{x_i}}$$

over $S \times_{\mathbb{F}_p} \widehat{X} \setminus \bigcup_i \Gamma_{x_i}$

Suppose that we are given a shtuka $(\mathcal{E}, \phi_{\mathcal{E}})$ of rank n over $\operatorname{Spec} k$, where k is an algebraically closed. Then it can be described by the following data:

- 1. The collection of points $x_1, \ldots, x_m \in X(k)$ where $\phi_{\mathcal{E}}$ is undefined. We call these points legs of the shtuka.
- 2. For each i = 1, ..., m a conjugacy class μ_i of cocharacters $G_m \to GL_n$, encoding the behaviour of $\phi_{\mathcal{E}}$ near x_i .

Now we explain the second item. Let $x \in X(k)$ be a leg of shtuka, and let $t \in \mathcal{O}_{X,x}$ be a uniformizing parameter at x. We have the complete stacks $(\operatorname{Frob}_S^*\mathcal{E})_x^{\wedge}$ and \mathcal{E}_x^{\wedge} . These two are free rank modules over $\mathcal{O}_{X,x}^{\wedge} \cong k[\![t]\!]$, whose generic fibers are identified using $\phi_{\mathcal{E}}$. That is we have two $k[\![t]\!]$ lattices in the same n dimensional k((t)) vector space.

- By the theory of elementary divisors, there exists a basis e_1, \ldots, e_n of \mathcal{E}_x^{\wedge} such that $t^{k_1}e_1, \ldots, t^{k_n}e_n$ is a basis of $(\operatorname{Frob}_S^*\mathcal{E})_x^{\wedge}$, where k_1, \ldots, k_n . These integers depend only on the shtuka. Another way to package of this data is as conjugacy class μ of cocharacters $G_m \to GL_n$ via $\mu(t) = \operatorname{diag}(t^{k_1}, \ldots, t^{K_n})$.
- Thus there are some discrete data attach to a shtuka: the number of legs m and the ordered collection of cocharacterss (μ_1, \ldots, μ_m) . Fixing these, we can define a moduli space $\operatorname{Sht}_{GL_n, \{\mu_1, \ldots, \mu_m\}}$ whose k-points classify the following data:
 - 1. An m-tuple of points (x_1, \ldots, x_m) of X(k).
 - 2. A shtuka $(\mathcal{E}, \phi_{\mathcal{E}})$ of rank n with legs $x_1, \ldots x_m$, for which the relative position of $\mathcal{E}_{x_i}^{\wedge}$ and $(\operatorname{Frob}_{S}^*\mathcal{E})_{x_i}^{\wedge}$ is bounded by the cocharacter μ_i for all $i = 1, \ldots, m$.

It can be proved that $\operatorname{Sht}_{GL_n,\{\mu_1,\ldots,\mu_m\}}$ is representable by a Deligne-Mumford stack. We have a structure map

$$f: \operatorname{Sht}_{GL_n, \{\mu_1, \dots, \mu_m\}} \to X^m$$

by sending a shtuka to its m-tuple of legs.

We can add level structures to these spaces of shtukas, parametrized by finite closed subscheme $N \subset X$. A level N-structure on $(\mathcal{E}, \phi_{\mathcal{E}})$ is then a trivialization of the pullback of \mathcal{E} to N which is compatible with $\phi_{\mathcal{E}}$. By this additional structure, we can get a family of shtukas $\operatorname{Sht}_{GL_n, \{\mu_1, \dots, \mu_m\}}$ and morphisms

$$f_N: Sht_{GL_n, \{\mu_1, ..., \mu_m\}, N} \to (X/N)^m$$
.

The stack $\operatorname{Sht}_{GL_n,\{\mu_1,\ldots,\mu_m\},N}$ carries an action of $GL_n(\mathcal{O}_N)$, by altering the trivialization of $\mathcal E$ on N. The inverse limit $\varprojlim_N \operatorname{Sht}_{GL_n,\{\mu_1,\ldots,\mu_m\},N}$ admits an action of $GL_n(\mathbb A_K)$, via the Hecke correspondences. Assume the relative dimension of f is d. We consider the cohomology $R^d(f_N)!\overline{\mathbb Q}_l$, this an $\overline{\mathbb Q}_l$ étale sheaf on X^m .

Passing to the limit over N, one gets a big representation of $\operatorname{GL}_n(A_K) \times \operatorname{Gal}(\overline{K}/K) \times \cdots \operatorname{Gal}(\overline{K}/K)$ on $R^d(f_N)_! \overline{\mathbb{Q}}_l$. Roughly, we expects this space to decompose is as follows

$$\underset{N}{\varinjlim} R^d(f_N)_! \overline{\mathbb{Q}}_l = \bigoplus_{\pi} \pi \otimes (r_1 \circ \sigma(\pi)) \otimes \cdots \otimes (r_m \circ \sigma(\pi))$$

 π run over cuspidal automorphic representations of $\mathrm{GL}_n(K)$,

 $\sigma(\pi): \mathrm{Gal}(\overline{(K)}/K) o \mathrm{GL}_n(\overline{\mathbb{Q}}_l)$ is the corresponding L-parameter,

 $r_i: GL_n \to GL_{n_i}$ is an algebraic representation corresponding to μ_i .

Drinfeld (1980, n=2) and L. Lafforgue (general n, 2002) considered the case of m=2, with μ_1 and μ_2 corresponding to the n-tuples $(1,0,\ldots,0)$ and $(0,\ldots,0,-1)$ respectively. V. Lafforgue considered general reductive group G in place of GL_n .

Shimura Varieties

A Shimura datum is a pair (G,μ) , where G is a reductive group over $\mathbb Q$, and $\mu:C^\times\to G(R)$ is a morphism of real groups, such that the conjugacy class $\mathcal H_\mu$ of μ is a complex manifold. The tower of Shimura varieties is

$$Sh(G, \mu)_K = G(\mathbb{Q}) \setminus (\mathcal{H}_{\mu}) \times G(A_f)/K$$

where K runs over all compact open subgroups of $G(A_f)$. The l-adic cohomology of the tower admits an action $G(A_f) \times \operatorname{Gal}(\overline{E}/E)$. Let

$$H^{i}(\xi) = \lim_{\longrightarrow_{K}} H^{i}(Sh(G, \mu)_{K, \overline{\mathbb{Q}}}, \overline{\mathbb{Q}}_{l})$$
$$H^{*}(\xi) = \sum_{i} (-1)^{i} H^{i}(\xi)$$

Conjecture

$$H^*(\xi) = \sum_{\pi} a(\pi, \xi) \pi_f \otimes (R_{\mu} \circ \phi_{\pi})|_{\operatorname{Gal}(\overline{\mathbb{Q}}/E)}$$

Here π runs over cuspidal automorphic representations of G, $R_{\mu}: {}^{L}G \to GL_{n}$ is the representation of highest weight μ , and $a(\pi, \xi)$ is a integer.

Adic Spaces

Definition

- A Huber ring is a topological ring A, such that there exists an open subring $A_0 \subset A$ and a finitely generated ideal $I \subset A_0$ such A has the I-adic topology.
- A Huber ring A is Tate if it continuous a topologically nilpotent unit. Such an element is called a pseudo-uniformizer
- A subset S of a topological ring A is bounded if for all open neighborhoods U of 0, there exists an open neighborhood V of 0 such that $V \cdot S \subset U$.
- An element $f \in A$ is power-bounded if $\{f^N\} \subset A$ is bounded. Let A° be the subset of power-bounded elements. If A is linearly topologized (for instance if A is Huber) then $A^\circ \subset A$ is a subring.
- A Huber ring A is uniform if $A^{\circ} \subset A$ is bounded.

Definition

- Let A be a Huber ring. A subring $A^+ \subset A$ is a ring of integral elements if it is open and integrally closed and $A^+ \subset A^\circ$. A Huber pair is a pair (A,A^+) , where A is a Huber and $A^+ \subset A$ is ring of integral elements.
- Given a Huber pair, we let $\mathrm{Spa}(A,A^+)\subset\mathrm{Cont}(A)$ be the subset of continuous valuations x for which $|f|\leq 1$ for all $f\in A^+$. Write $\mathrm{Spa}(A,A^\circ)$.

Example

$$A=\mathbb{Q}_p\langle T\rangle$$
 and $A^+=A^\circ=\mathbb{Z}_p\langle T\rangle$, we define

$$A^{++} = \{\sum_{n=0}^{\infty} a_n T^n \in A^+ ||a_n| < 1 \text{ for all } n \ge 1\}$$

We have $A^{++} \subset A^+$, so $\operatorname{Spa}(A, A^+) \subset \operatorname{Spa}(A, A^{++})$.

Topology of Adic Spaces

The topology of an adic spectrum $X = \operatorname{Spa}(A, A^+)$ is generated by *rational sets* of the form

$$U = U(\frac{f_1, \dots, f_r}{g}) = \{ v \in \operatorname{Spa}(A, A^+) | v(f_i) \le v(g) \ne 0, i = 1, \dots, r \}$$

For $U = U(f_i/g)$ a rational set

GIO $\mathcal{O}_X(U)$, the completion of $A[f_i/g]$.

 $\mathcal{O}_X^+(U)$, the completion of the integer closure of $A^+[f_i/g]$ in $A[f_i/g]$.

Definition

An adic space is a triple $(X, \mathcal{O}_X, \mathcal{O}_X^+)$ which is locally isomorphic to an affinoid adic space $\mathrm{Spa}(A, A+)$.

Rigid Analytic Spaces

Definition

A rigid affinoid is an algebra A which has form T_n/I , where $T_N = K\langle z_1, \ldots, z_n \rangle$ is the subring of the of all power series $K[[z_1, \ldots, z_n]]$ consisting of the power series $\sum_{\alpha} c_{\alpha} z_1^{\alpha_1} \cdots z_n^{\alpha_n} \in K[[z_1, \ldots, z_n]]$ satisfying $\lim c_{\alpha} = 0$, where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a multi-index.

One define the **Gauss norm** on T_n by

$$\|\Sigma_{\alpha}c_{\alpha}\|=\max|c_{\alpha}|.$$

Further $T_n^o := \{f \in T_n | ||f|| \le 1\}$ and $T_n^{oo} := \{f \in T_n | ||f|| < 1\}$. Rigid analytic spaces are adic spaces, locally are $\operatorname{Spa}(T_n, T_n^\circ)$.

Perfectoid Spaces

Definition

A ring R is perfectoid if R is a complete Tate ring R which is uniform and there exits a pseudo-uniformizer $\varpi \in R$ such that $\varpi^p|p$ holds in R° , and such that the p-th power Frobenius map

$$\phi: R^{\circ}/\varpi \to R^{\circ}/\varpi^p$$

is an isomorphism.

Definition

A perfectoid field is a perfectoid Tate ring R which is a nonarchmedean field. That is is a complete non-archimedean field K of residue characteristic p, equipped with a non-discrete valuation of rank 1, such that the Frobenius map $\theta: \mathcal{O}_K/p \to \mathcal{O}_K/p$ is surjective, where $\mathcal{O}_K \subset K$ is the subring of elements of norm ≤ 1 .

Definition

- A perfectoid space is an adic space that may be covered by affinoids of the form $\mathrm{Spa}(A,A^+)$, where A is perfectoid.
- Let A be a perfectoid ring. We define its tilt to be

$$A^{\flat} := \lim_{\stackrel{\longleftarrow}{x \to x^p}} A$$

A diamond is a pro-étale sheaf $\mathcal D$ on Perf such that one can write D=X/R as a quotient of a perfectoid space X of characteristic P by an equivalence relation $R\subset X\times X$ such that R is a perfectoid space with $s,t:R\to X$ proétale.

v-Topology

Definition

In Perfd, $\{f_i: X_i \to Y\}_{i \in I}$ is a cover if and only if for all quasi-compact open subsets $V \subset Y$ there is some finite subset $I_V \subset I$ and quasicompact open $U_i \subset X_i$ for $i \in I_U$ such that $V = \bigcup_{i \in I_U} f_i(U_i)$.

Definition

An Artin v-stack is a small v-stack X such that the diagonal map $\Delta_X: X \to X \times X$ is representable in locally spatial diamonds, and there is some surjection map $f: U \to X$ from a locally spatial diamond U such that f is separated and cohomologically smooth.

Theorem (Fargues-Scholze, 2021)

The stack Bun_G is a cohomologically smooth Artin v-stack of l-dimension 0.

Mix-Characteristic Shtukas

Theorem

Let $S \in \text{Perf}$. The following sets are naturally identified:

- 1. Sections of $(S \dot{\times} \operatorname{Spa}\mathbb{Z}_p)^{\diamond} \to S$,
- 2. Morphisms $S \to \operatorname{Spd}\mathbb{Z}_p$,
- 3. Untilts S^{\sharp} of S.

Definition

Let S be a perfectoid space in characteristic p. Let $x_1,\ldots,x_m:S\to\mathrm{Spd}\mathbb{Z}_p$ be a collection of morphism; We let $\Gamma_{x_i}:S_i^\sharp\to S\dot{\times}\mathrm{Spa}\mathbb{Z}_p$ be the corresponding closed Cartier divisor. A mixed-characteristic shtuka of rank n over S with legs x_1,\ldots,x_m is a rank n vector bundle $\mathcal E$ over $S\dot{\times}\mathrm{Spa}\mathbb{Z}_p$ together with an isomorphism

$$\phi_{\mathcal{E}}: \mathrm{Frob}_{\mathcal{S}}^* \mathcal{E}|_{\dot{S} \times \mathrm{Spa} \mathbb{Z}_p \setminus \bigcup_i \Gamma_{x_i}} \cong \mathcal{E}|_{\dot{S} \times \mathrm{Spa} \mathbb{Z}_p \setminus \bigcup_i \Gamma_{x_i}}$$

that is meromorphic along $\cup_i \Gamma_{x_i}$.

Theorem (Scholze-Weinstein, 2020)

The following categories are equivalent:

- 1. Shtukas over $\operatorname{Spa} C^{\flat}$ with one leg at $\phi^{-1}(x_C)$, i.e., vector bundles $\mathcal E$ on $\mathcal Y_{[o,\infty]}$ together with an isomorphism $\phi_{\mathcal E}: (\phi^*\mathcal E)|_{\mathcal U_{[0,\infty)}\setminus \phi^{-1}(x_C)}\cong \mathcal E|_{\mathcal U_{[0,\infty)}\setminus \phi^{-1}(x_C)}.$
- 2. Pairs (T, E), where T is a finite free \mathbb{Z}_P -module, and $E \subset T \otimes_{\mathbb{Z}_p} B_{dR}$ is a B_{dR}^+ lattice.
- 3. Quadruples $(\mathcal{F}, \mathcal{F}, \beta, T)$, where \mathcal{F} and \mathcal{F}' are vector bundles on the Fargues-Fontaine curve X_{FF} such that \mathcal{F} is trivial, $\beta: \mathcal{F}|_{X_{FF}\setminus \{\infty\}} \cong \mathcal{F}'|_{X_{FF}\setminus \{\infty\}}$ is an isomorphism, and $T\subset H^0(X_{FF}, \mathcal{F})$ is a \mathbb{Z}_p lattice.
- 4. Vector bundles $\widetilde{\mathcal{E}}$ on \mathcal{Y} together with an isomorphism $\phi_{\widetilde{\mathcal{E}}}: (\phi^*\widetilde{\mathcal{E}})|_{\mathcal{Y}\setminus \phi^{-1}(x_C)} \cong \widetilde{\mathcal{E}}|_{\mathcal{Y}\setminus \phi^{-1}(x_C)}$.
- 5. Breuil-Kisin-Fargues modules over A_{inf} , i.e., finite free A_{inf} -modules M together with isomorphism $\phi_M: (\phi^*M)[\frac{1}{\phi(\mathcal{E})}] \cong M[\frac{1}{\phi(\mathcal{E})}]$.

Local Mix-Characteristic Shtukas

Let k be a discrete algebraically closed field, and $L = W(k)[\frac{1}{n}]$.

Let $(\mathcal{G}, b, \{\mu_i\})$ be a triple consisting of a smooth group scheme \mathcal{G} with reductive generic fiber G and connected special fiber, and element $b \in G(L)$, and a collection μ_1, \ldots, μ_m of conjugacy class of cocharacters $G_m \to G_{\overline{\mathbb{Q}}_p}$. For $i = 1, \cdots, m$, let E_i/\mathbb{Q}_p be the field of definition of μ_i , and let $\check{E}_i = E_i \cdot L$. For any perfectoid space $S = \operatorname{Spa}(R, R^+)$ over k, a shtuka associated with $(\mathcal{G}, b, \{\mu_i\})$ is a quadruples $(\mathcal{P}, \{S_i^{\sharp}\}, \phi_{\mathcal{P}}, \iota_r)$, where:

- 1. \mathcal{P} is a \mathcal{G} -torsor on $S \times \operatorname{Spa} \mathbb{Z}_p$,
- 2. S_i^{\sharp} is a an untilt of $S \to \breve{E}_i$, for $i = 1, \dots, m$,
- 3. $\phi_{\mathcal{P}}$ is an isomorphism

$$\phi_{\mathcal{P}}: \operatorname{Frob}_{\mathcal{S}}^* \mathcal{P}|_{\dot{S} \times X \setminus \bigcup_i \Gamma_{x_i}} \cong \mathcal{P}|_{\dot{S} \times X \setminus \bigcup_i \Gamma_{x_i}},$$

4. ι_r is an isomorphism

$$\iota_r: \mathcal{P}|_{\mathcal{Y}_{[r,\infty]}(S)} \to G \times \mathcal{Y}_{[r,\infty]}(S)$$

for large enough r, under which $\phi_{\mathfrak{P}}$ gets identified with $b \times \operatorname{Frob}_S$.

By the definition of local shtukas, we can define a moduli functor

$$\begin{aligned} \mathrm{Shtuka}_{\mathcal{G},b,\mu} &: & \mathrm{Perf}_k \to \mathrm{Set} \\ & & S \to \{(\mathcal{P}, \{S_i^\sharp\}, \phi_{\mathcal{P},\iota_r})\} \end{aligned}$$

$$S \to \{(\mathcal{P}, \{S_i^{\sharp}\}, \phi_{\mathcal{P}, \iota_r})\}$$

Theorem

The moduli space Shtuka $\mathcal{G}_{,b,\mu_{\bullet}}$ is a locally spatial diamond.

Theorem (Scholze-Weinstein, 2013)

There is a natural isomorphism

$$\mathcal{M}_{\mathbb{X}, \breve{Q}_p} \cong \mathrm{Shtuka}_{(GL_n, b, \mu)}$$

as diamonds over $\operatorname{Spf} \mathbb{Q}_p$.

Definition

A local Shimura datum is a triple (G,b,μ) consists a reductive group G over \mathbb{Q}_p , a conjugacy class μ of minuscule cocharacters $G_m \to G_{\bar{\mathbb{Q}}_p}$, and $b \in B(G,\mu^{-1})$, that is $\nu_b \leq (\mu^{-1})^{\diamond}$ and $\kappa(b) = -\mu^{\natural}$.

There is a étale map

$$\pi_{GM}: \operatorname{Shtuka}_{G,b,\mu,K} \to Gr_{G,\operatorname{Spd}\breve{E},\leq\mu}.$$

By the construction of diamonds, there exists a unique smooth rigid space $\mathcal{M}_{G,b,\mu,K}$ over \check{E} with an étale map towards $\mathscr{F}_{G,\mu,\check{E}}$.

Definition

The local Shimura variety associated with (G, b, μ) is the tower

$$(\mathcal{M}_{G,b,\mu,K})_{K\subset G(\mathbb{Q}_p)}$$

of smooth rigid space over \check{E} , together with its étale period map to $\mathcal{F}_{G,\mu,\check{E}}$

Condensed Mathematics

Definition

1. We define $*_{pro\acute{e}t}$ as the proétale site of a point, which is the category of profinite sets S, with finite jointly surjective families of maps as covers.

A condensed set /group/ring, ... is a functor

$$T: \{ profinte sets \}^{op} \rightarrow \{ sets/rings/groups/ \dots \}$$

$$S \mapsto T(S)$$

satisfies $T(\emptyset) = *$ and satisfying the following condition

1. For any profinte set S_1 , S_2 , the natural map

$$T(S_1 \cup S_2) \rightarrow T(S_1) \times T(S_2)$$

is a bijection.

2. For any surjection $S' \to S$ of profinte sets with the fibre product $S' \times_S S'$ and its projection p_1, p_2 to S', the map

$$T(S) \to \{x \in T(S) | p_1^*(x) = p_2^*(x) \in T(S' \times_S S')\}$$

is a bijection.

Solid Abelian Groups

Definition

1. For a profinite set $S = \lim_{\longleftarrow i} S_i$, we define the condensed abelian group

$$\mathbb{Z}[S]^{\blacksquare} := \lim_{\longleftarrow_i} \mathbb{Z}[S_i].$$

There is a natural map $S = \lim_{\longleftarrow_i} S_i \to \mathbb{Z}[S]^{\blacksquare}$, inducing a map $\mathbb{Z}[S] \to \mathbb{Z}[S]^{\blacksquare}$.

- 2. A solid abelian group is a condensed abelian group A such that for all profinite set S and all maps $f: S \to A$, there is a unique map $\widetilde{f}: \mathbb{Z}[S]^{\blacksquare} \to A$ extending f.
- 3. A complex $C \in D(\text{Cond}(\text{Ab}))$ of condensed abelian groups is solid if for all profinite sets, the natural map

$$R\mathrm{Hom}(\mathbb{Z}[S]^{\blacksquare},C) \to R\Gamma(S,C) = R\mathrm{Hom}(\mathbb{Z}[S],C)$$

is an isomorphism.

- Consider the functor of fixed points $\operatorname{Solid}_G \to \operatorname{Solid}$ defined by $\mathcal{M} \to \mathcal{M}^G$, which is right adjoint to the trivial action functor $\operatorname{Solid}_G \to \operatorname{Solid}_G$. Let $\mathcal{C} \to R\Gamma(G, \mathcal{C})$ be its derived functor $D(\operatorname{Solid}_G) \to D(\operatorname{Solid})$.
- If M is an abelian group which is separated and complete for a linear topology, and *G* act continuously on M, then

$$H^i(R\Gamma(G,M)) \cong \underline{H^i_{cts}(G,M)}.$$

Let G be a profinite group, write

$$D(\operatorname{Solid}_G) \to D(\operatorname{Solid})$$

 $\mathcal{C} \to \mathcal{C}^{hG}$

for the functor $R\Gamma(G, C)$.

Proétale Cohomology of Rigid Analytic Spaces

Definition

Let X be a rigid-analytic space over K, the object of the pro-étale site $X_{\text{pro\acute{e}t}}$ are formal limits $U = \varprojlim_{\longleftarrow} U_i$, where i runs over a filtered index set and U_i are rigid analytic spaces which are étale over X.

Let
$$\widehat{\mathcal{O}}^+ = \underset{\longleftarrow}{\lim} \mathcal{O}^+/p^n$$
.

Proposition

We have an isomorphism in D(Cond(Ab)):

$$R\Gamma_{\mathrm{cond}}(X_{\mathrm{pro\acute{e}t}},\widehat{\mathcal{O}}^+)\cong R\Gamma(X_{\mathrm{pro\acute{e}t}},\widehat{\mathcal{O}}_{\mathrm{cond}}^+).$$

Let $Y \to X$ be a pro-étale *G*-torsor. There is an isomorphism in D(Solid):

$$R\Gamma(X_{\operatorname{pro\acute{e}t}},\widehat{\mathcal{O}}_{\operatorname{cond}}^+)\cong R\Gamma(Y_{\operatorname{pro\acute{e}t}},\widehat{\mathcal{O}}_{\operatorname{cond}}^+)^{hG}$$

The Proétale Cohomology of of LT_K and $\mathcal H$

Theorem

There is a morphism of differential graded solid W-algebras, which is equivariant for the action of \mathbb{G}_n :

$$A[\epsilon] \to R\Gamma(LT_{K.\text{pro\'et}}, \mathcal{O}_{\text{cond}}^+).$$

There is a morphism of differential graded solid \mathbb{Z}_p -algebras, which is equivariant for the action of $\mathrm{GL}_n(\mathbb{Z}_p)$:

$$\mathbb{Z}_p[\epsilon] \to R\Gamma(\mathcal{H}_{\text{pro\acute{e}t}}, \widehat{\mathcal{O}}_{\text{cond}}^+).$$

Let A be the cofiber of either of the above morphism. Then $H^i(A)=0$ for $i\leq 0$, and all $H^i(A)$ for $i\geq 1$ are annihilated by a single power of p.

Thanks for Listening!

