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Spectral Stacks

In derived algebraic geometry, we replace commutative rings with simplicial rings,
E..-ring spectra, and so on. One version of derived algebraic geometry is spectral
algebraic geometry, which replaces commutative rings with E.,-rings.

Definition @

A nonconnective spectral Deligne-Mumford stack is a spectrally ringed co-topos
X = (X, Ox) which locally look likes SpétA, for an E,, ring A. We say X is a spec-
tral Deligne-Mumford stack, if all such A is connective.
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E..-ring spectra, and so on. One version of derived algebraic geometry is spectral
algebraic geometry, which replaces commutative rings with E.,-rings.

Definition @

A nonconnective spectral Deligne-Mumford stack is a spectrally ringed co-topos
X = (X, Ox) which locally look likes SpétA, for an E,, ring A. We say X is a spec-
tral Deligne-Mumford stack, if all such A is connective.

1. We say X = (X, Oy) is a n-truncated Deligne-Mumford stack if the structure
sheaf Oy is n-truncated.

2. We say X = (X, Oy) is a spectral Deligne-Mumford n-stack if X (Rp) is
n-truncated for Ry a commutative ring. A spectral algebraic space is a
Deligne-Mumford 0-stack.



Recognition Criterion

Theorem ﬂ]ﬁ

A spectrally ringed oo-topos (X,Oy) is a nonconnective spectral Deligne-
Mumford stack if and only if it satisfying following conditions:

1. The underlying ringed topos (X7, myOy) is a classical Deligne-Mumford
stack.

2. The canoncial geometric morphism ¢, : X — Shvs(X'") is étale.
3. The homotopy group 7,0y is a quasi-coherent sheaf on (X", 19Oy ).
E 4. Oy is a hypercomplete sheaf.




Spectral Varieties and Spectral p-Divisible Groups

Definition

A spectral variety X over an E,-ring R is a nonconnective spectral Deligne-
Mumford stack X, such that 70X — SpetT>(R is flat, proper, locally almost of
finite presentation, geometrically reduced and geometrically connected.

Ea Abelian varieties over R : commutative monoidal objects of Var(R).
&= Spectral elliptic curves over R: spectral abelian varieties of dimension 1 over R.
=& Strict elliptic curves over R: abelian group objects of Var(R) with dimension 1.



Spectral Varieties and Spectral p-Divisible Groups

Definition

A spectral variety X over an E,-ring R is a nonconnective spectral Deligne-
Mumford stack X, such that 70X — SpetT>(R is flat, proper, locally almost of
finite presentation, geometrically reduced and geometrically connected.
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Definition @

L

A height h p-divisible group over an E.,-ring A is a functor X : (AbfiIl
FFG(A) with the following conditions:

1. X(0) is trivial.
2. X send exact sequence to fiber sequence.
E 3. X(M) has degree | M|" over A for a finite p-group M.




Deformations and Orientations

Let Gy be a p-divisible group over Ry, a spectral deformation of Gy along ps : A — Ry is
a pair (G, a), where G is a spectral p-divisible group over Aand a : Gy ~ p}G.

Theorem (Lurie '18) @

There exists a connective E-ring R with a morphism p : R — Ry, such that
for other py : A — Ry, the extension of scalars induces an equivalence of co-
categories

E MapCAlg/RO (Rg;g7 A) - DefGO (Aa PA)-

BB An orientation of an 1-dimensional spectral formal group G over an E,-ring R is
amap e : S> — Q®°G(7>0R) which satisfies certain conditions.

Theorem (Lurie '18)

There exists an Eo,-ring D¢ and e € Or(Xp, ), such that for other R’ € CAlgj,

Mapcaig, (Pa, R) — Or(Grr).




Elliptic Cohomology

An elliptic cohomology consists of a triple (E, C, ¢), where E is an even periodic
spectrum, C is an elliptic curve C over mE, ¢ : Gg = Cis an isomorphism of group.

Theorem(Goerss-Hopkins-Miller-Lurie) @

There is a sheaf O,y of E.-ring spectra over the stack My for the étale topol-
ogy. For any étale morphism f : Spec(R) — My, there is a natural structure of
elliptic spectrum (Oyyf (f), Cr, ¢), satisfying moO s (f) = R, and Cy is a general-
&lized elliptic curve over R classified by {.




Elliptic Cohomology

An elliptic cohomology consists of a triple (E, C, ¢), where E is an even periodic
spectrum, C is an elliptic curve C over myE, ¢ : Gy = C is an isomorphism of group.

Theorem(Goerss-Hopkins-Miller-Lurie) @

There is a sheaf O s of Ew-ring spectra over the stack My for the étale topol-
ogy. For any étale morphism f : Spec(R) — My, there is a natural structure of
elliptic spectrum (Oyyf (f), Cr, ¢), satisfying moO s (f) = R, and Cy is a general-
&lized elliptic curve over R classified by {.

EE There exists a nonconnective spectral Deligne-Mumford stack M, such that
Mapg,pie (SPEtR, on = ENT(R)~

G The étale topos U of M,y is the full subcategory of the underlying topos X" of M3,
We have a map ¢ : M?;, — M, we consider the dlrect image sheaf ¢, O M

which is sheaf of E-rings on X'. We get a functor (’) ” : U — CAlg. This
procedure can be viewed as a construction of elliptic cohomology.



Morava E-theories

Let Gy be a formal group, we have a Morava E-theory E(n), which corresponds the

universal deformation of Gy, m.E(n) = W(k)[v1,--- , vo_1][BF].

Theorem (Lubin-Tate, 1966)

following sense: for every infinitesimal thickening A of k, there is a bijection

&LL Hom i (Rrr, A) — Def(A).

There is a universal formal group G over Riy = W(k)[[v1,--- , v, — 1]] in the

e
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Let Gy be a formal group, we have a Morava E-theory E(n), which corresponds the
universal deformation of Gy, m.E(n) = W(k)[v1,--- , vo_1][BF].

i

Theorem (Lubin-Tate, 1966)

There is a universal formal group G over Riy = W(k)[[v1,--- , v, — 1]] in the
following sense: for every infinitesimal thickening A of k, there is a bijection

Hom i (Rrr, A) — Def(A).

e

1.

Let Gy be a formal group over £, it can be viewed as identity component of a
connected classical p-divisible group Gy over k.

ring Ri". Let G be the identity component of G, and R be the orientation
classifier of the identity component G°.

. Eg, = Lk, Rg, is even periodic, it satisfies the same properties with Morava

E-theories.

. Uniqueness of Morava E-theories.

. There exists a universal spectral deformation G over the spectral deformation



Lurie's Theorem

Theorem (Lurie, 2010-2018) %

Let M;ld denote the moduli stack of one dimensional height n p-divisible groups,

then there is a sheaf of E-rings OT°P on the étale site of M”}d , such that for any
E := OT°P(SpecR S M)

we have
SpfroEY™ = G°

E where G is the formal part of the p-divisible group G.

Problems: The universal objects of deformations with level structures are not étale
over M;ld. How do we lift those objects to spectra version?



Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X /S, a derived relative Cartier divisor is a
morphism D — X such that D — X is a closed immersion, the ideal sheaf of D is a line
bundle over X, and the morphism D — Sis flat, proper and locally almost of finite
presentation.



Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X /S, a derived relative Cartier divisor is a
morphism D — X such that D — X is a closed immersion, the ideal sheaf of D is a line
bundle over X, and the morphism D — Sis flat, proper and locally almost of finite

presentation.
Theorem (Ma '24) @

Suppose that E is a spectral algebraic space over a connective E.,-ring R, such
that E — R is flat, proper, locally almost of finite presentation, geometrically
reduced, and geometrically connected, then the functor

CDiVE/R : CAlg%n - S
R~ CDiv(Eg /R)

isrepresentable by a spectral algebraic space which is locally almost of finite pre-

E sentation over R.




Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R
is a relative Cartier divisor D — E satisfying its restriction to the heart comes from an
ordinary A-level structure.



Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R
is a relative Cartier divisor D — E satisfying its restriction to the heart comes from an

ordinary A-level structure.
Theorem (Ma '24) @

For a spectral elliptic curve E over a connective E,-ring R, the functor

Levelg/p @ CAlgg' — S
R+ Level(A, Ep /R)

E is representable by an affine spectral Deligne-Mumford stack.




Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived (Z/p*Z)"-1evel structure of
G is a derived (Z/p*Z)"-level structure

¢:D— G[pk]

of G[p¥]. We let Level(k, G/R) denote the co-groupoid of derived (Z/p*Z)"-level
structures of G/R.



Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived (Z/p*Z)"-1evel structure of
G is a derived (Z/p*Z)"-level structure

¢:D— G[pk]

of G[p¥]. We let Level(k, G/R) denote the co-groupoid of derived (Z/p*Z)"-level

structures of G/R.
Theorem (Ma '24) @

Suppose G is a spectral p-divisible group of height & over a connective E,-ring
R, then the functor

Level’é/R :CAlgy' -+ S; R — Level(k, G /R))

E is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPé R




Representability Theorem

Spectral Artin Representability Theorem (Lurie, 2004-2018) %

Let M : CAlg™ — S be a functor and R be a Noetherian E-ring such that moR
is a Grothendieck ring. Suppose f : M — SpecR is a natural transformation and
we have

1. M(Ry) is n-truncated for any discrete commutative ring Ry;
2. M is an étale sheaf;

3. M admits a connective cotangent complex Lyy;

4. M is nilcomplete, integrable and infinitesimally cohesive;
5. f is locally almost of finite presentation,

then M is representable by a spectral Deligne-Mumford stack which is locally
E almost of finite presentation over R.




Let X : CAlg™ — S be a functor. We will say that X is

&8 infinitesimally cohesive, if for every pull-back diagram on the left in CAlg™ such that
moA — moBand mgB' — my B are surjective whose kernel are nilpotent ideals in m9A and
moB', the induced diagram is a pull-back square in S.

A ——=A

|, | o

B % B X(B)
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G nilcomplete, if for every connective E,-ring R, the canonical map
X(R) = imX(7<,R)
“—n =

is a homotopy equivalence.



Let X : CAlg™ — S be a functor. We will say that X is

&8 infinitesimally cohesive, if for every pull-back diagram on the left in CAlg™ such that
moA — moBand mgB' — my B are surjective whose kernel are nilpotent ideals in m9A and
moB', the induced diagram is a pull-back square in S.

A ——=A

|, | o

B % B X(B)

G nilcomplete, if for every connective E,-ring R, the canonical map
X(R) = imX(7<,R)
“—n =

is a homotopy equivalence.

EE integrable, if for a local Noetherian E.,-ring which is complete with respect to its
maximal ideal m C myA, the canonical map

X(4) = limX(A/m")

is a homotopy equivalence.



Moduli Stack of Spectral Elliptic Curves with Derived Level Structures

Mey(A)

Theorem (Ma '24)

CAlg™ —» S
R— Men(A)(R) = El(A)(R)

aﬂris representable by a spectral Deligne-Mumford stack.

&




Moduli Stack of Spectral Elliptic Curves with Derived Level Structures

Theorem (Ma '24) ilﬁ

Ma(A) : CAlg™ — S
R— Meu(A)(R) = EN(A)(R)

E is representable by a spectral Deligne-Mumford stack.

Let {R — U;} be an étale cover of R, and U, be the associate check simplicial object.
We consider the following diagram

E1(A)(R) — > lima EI(A)(UL)

ip )

Ell(R) & . lima EI(UL).

p is a left fibration between Kan complexes, so is a Kan fibration. The right vertical
map is a pointwise Kan fibration. By picking a suitable model for the homotopy limit,
we may assume that g is a Kan fibration as well. We have g is an equivalence .



To prove that f is a equivalence, we only need to prove that for every E € Ell(R), the
map
p 'E ~ Level(A, E/R) — ligl Level(A, E xg Uy /Us) ~ g *g(E)

is an equivalence. But this is true due to étaleness of derived level structures.



Spectral Deformations with Derived Level Structures

Suppose Gy is a p-divisible group of height  over a perfect F,-algebra Ry. We consider
the following functor

MY o CAlglt — S
R — DefLevel® (G, R, k)

where DefLevel” (Gy, R, k) is the co-category spanned by those quadruples (G, p, e, n)
1. Gis a spectral p-divisible group over R.
2. pis an equivalence class of Gy-taggings of R.
3. eis an orientation of the identity component of G.
4.7 : D — Gisaderived (Z/p*Z)"-level structure of G/R.



Spectral Deformations with Derived Level Structures

Suppose Gy is a p-divisible group of height  over a perfect F,-algebra Ry. We consider
the following functor

MY o CAlglt — S
R — DefLevel® (G, R, k)

where DefLevel” (Gy, R, k) is the co-category spanned by those quadruples (G, p, e, n)
1. Gis a spectral p-divisible group over R.
2. pis an equivalence class of Gy-taggings of R.
3. eis an orientation of the identity component of G.
4.7 : D — Gisaderived (Z/p*Z)"-level structure of G/R.

Theorem (Ma '24)

The functor M{" is corepresentable by an E..-ring J L, where J Ly is a finite
Rg -algebra, R{; is the orientation deformation ring of Gy.




We call this spectrum J L the Jacquet-Langlands spectrum. It is easy to see that this
J L admit an action of GL,(Z/p*7Z) x G,. When k varies, we have a tower

Spét T L

SpétJ Lo.

We call this tower the higher categorical Lubin-Tate tower.



The Langlands duals of Morava E-theories

qa JL = liinjﬁk
s We have actions G, x GL,(Z,) ~ JL.



The Langlands duals of Morava E-theories

GEa 7L = liinj Ly
s We have actions G, x GL,(Z,) ~ JL.
E We define the dual Morava E-theory LE,, to be J LhGn,

& We have convergent spectral sequences

Ey' 2 Hy(Gn % GLn(Zp), 0 J L) = Ti—sLg(n)S"-

Ey' = Hiy(GLu(Zp), 7w En) = i sLic(n)S"-



Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded QQ-algebras

Q& muLi(mS” = Ag, (C1, G2, -+ Cn),

E where the latter is the exterior Q,-algebra with generators ¢; in degree 1 — 2i.

&

They use the following diagram in their proof.

X
GLn(y \\Gj
LTk H



Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded QQ-algebras

Q& muLi(mS” = Ag, (C1, G2, -+ Cn),

E where the latter is the exterior Q,-algebra with generators ¢; in degree 1 — 2i.

&

They use the following diagram in their proof.
X
GL,,(;ZP/ \\Gj
LTk H
It can be lift to the following diagram in the level of spectra.

JL
GL,(}Z,,/ Y
E, Lg,



Thanks for Listening !
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