Derived Moduli Problems and New Cohomology Theories

Xuecai Ma Westlake University

2024.09.09

Spectral Algebraic Geometry

📭 An Review of Chromatic Homotopy Theory

💷 Derived Moduli Problems and New Cohomology Theories

Spectral Stacks

In derived algebraic geometry , we replace commutative rings with simplicial rings, \mathbb{E}_{∞} -ring spectra, and so on. One version of derived algebraic geometry is spectral algebraic geometry, which replaces commutative rings with \mathbb{E}_{∞} -rings.

Definition

A nonconnective spectral Deligne-Mumford stack is a spectrally ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_X)$ which locally look likes Spét*A*, for an E_∞ ring A. We say X is a spectral Deligne-Mumford stack, if all such A is connective.

Spectral Stacks

눭

In derived algebraic geometry , we replace commutative rings with simplicial rings, \mathbb{E}_{∞} -ring spectra, and so on. One version of derived algebraic geometry is spectral algebraic geometry, which replaces commutative rings with \mathbb{E}_{∞} -rings.

Definition

A nonconnective spectral Deligne-Mumford stack is a spectrally ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_X)$ which locally look likes Spét*A*, for an E_∞ ring A. We say X is a spectral Deligne-Mumford stack, if all such A is connective.

- 1. We say $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ is a n-truncated Deligne-Mumford stack if the structure sheaf $\mathcal{O}_{\mathcal{X}}$ is n-truncated.
- 2. We say $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ is a spectral Deligne-Mumford n-stack if $X(R_0)$ is n-truncated for R_0 a commutative ring. A spectral algebraic space is a Deligne-Mumford 0-stack.

Recognition Criterion

Theorem

A spectrally ringed ∞ -topos $(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ is a nonconnective spectral Deligne-Mumford stack if and only if it satisfying following conditions:

- 1. The underlying ringed topos $(\mathcal{X}^{\heartsuit}, \pi_0 \mathcal{O}_{\mathcal{X}})$ is a classical Deligne-Mumford stack.
- 2. The canoncial geometric morphism $\phi_* : \mathcal{X} \to \operatorname{Shv}_{\mathcal{S}}(\mathcal{X}^{\heartsuit})$ is étale.
- 3. The homotopy group $\pi_n \mathcal{O}_{\mathcal{X}}$ is a quasi-coherent sheaf on $(\mathcal{X}^{\heartsuit}, \pi_0 \mathcal{O}_{\mathcal{X}})$.
- 4. $\mathcal{O}_{\mathcal{X}}$ is a hypercomplete sheaf.

Spectral Varieties and Spectral p-Divisible Groups

臝

Definition

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral Deligne-Mumford stack X, such that $\tau_{\geq 0}X \to \operatorname{Spet}\tau_{\geq 0}R$ is flat, proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

- □ Abelian varieties over R : commutative monoidal objects of Var(R).
- Spectral elliptic curves over *R*: spectral abelian varieties of dimension 1 over *R*.
- Strict elliptic curves over R: abelian group objects of Var(R) with dimension 1.

Spectral Varieties and Spectral p-Divisible Groups

Definition

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral Deligne-Mumford stack X, such that $\tau_{\geq 0}X \to \operatorname{Spet}\tau_{\geq 0}R$ is flat, proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

Abelian varieties over R : commutative monoidal objects of Var(R).
Spectral elliptic curves over R: spectral abelian varieties of dimension 1 over R.
Strict elliptic curves over R: abelian group objects of Var(R) with dimension 1.

Definition

A height h *p*-divisible group over an \mathbb{E}_{∞} -ring A is a functor $X : (Ab_{fin}^{p})^{op} \to FFG(A)$ with the following conditions:

1. X(0) is trivial.

1

2. X send exact sequence to fiber sequence.

3. X(M) has degree $|M|^h$ over A for a finite p-group M.

Deformations and Orientations

Let G_0 be a p-divisible group over R_0 , a spectral deformation of G_0 along $\rho_A : A \to R_0$ is a pair (G, α) , where G is a spectral p-divisible group over A and $\alpha : G_0 \simeq \rho_A^* G$.

Theorem (Lurie '18)

There exists a connective \mathbb{E}_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho : R_{G_0}^{un} \to R_0$, such that for other $\rho_A : A \to R_0$, the extension of scalars induces an equivalence of ∞ -categories

$$\operatorname{Map}_{\operatorname{CAlg}_{/R_0}}(R^{un}_{G_0}, A) \to \operatorname{Def}_{G_0}(A, \rho_A).$$

An orientation of an 1-dimensional spectral formal group G over an \mathbb{E}_{∞} -ring R is a map $e: S^2 \to \Omega^{\infty} G(\tau_{\geq 0} R)$ which satisfies certain conditions.

Theorem (Lurie '18)

There exists an \mathbb{E}_{∞} -ring \mathcal{D}_G and $e \in Or(X_{\mathcal{D}_G})$, such that for other $R' \in CAlg_R$

 $\operatorname{Map}_{\operatorname{CAlg}_R}(\mathcal{D}_G, R') \to \operatorname{Or}(G_{R'}).$

Elliptic Cohomology

An elliptic cohomology consists of a triple (E, C, ϕ) , where E is an even periodic spectrum, C is an elliptic curve C over $\pi_0 E$, $\phi : G_E \cong \hat{C}$ is an isomorphism of group.

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the étale topology. For any étale morphism $f : \operatorname{Spec}(R) \to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum ($\mathcal{O}_{tmf}(f), C_f, \phi$), satisfying $\pi_0 \mathcal{O}_{tmf}(f) = R$, and C_f is a generalized elliptic curve over R classified by f.

Elliptic Cohomology

릺

An elliptic cohomology consists of a triple (E, C, ϕ) , where E is an even periodic spectrum, C is an elliptic curve C over $\pi_0 E$, $\phi : G_E \cong \hat{C}$ is an isomorphism of group.

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the étale topology. For any étale morphism $f : \operatorname{Spec}(R) \to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum ($\mathcal{O}_{tmf}(f), C_f, \phi$), satisfying $\pi_0 \mathcal{O}_{tmf}(f) = R$, and C_f is a generalized elliptic curve over R classified by f.

Description There exists a nonconnective spectral Deligne-Mumford stack \mathcal{M}_{ell}^{or} such that

 $\operatorname{Map}_{\operatorname{SpDM}^{nc}}(\operatorname{Sp\acute{e}t} R, \mathcal{M}^{or}_{ell}) \cong \operatorname{Ell}^{or}(R)^{\simeq}$

The étale topos \mathcal{U} of M_{ell} is the full subcategory of the underlying topos \mathcal{X} of \mathcal{M}_{ell}^s . We have a map $\phi : \mathcal{M}_{ell}^{or} \to \mathcal{M}_{ell}^s$, we consider the direct image sheaf $\phi_* \mathcal{O}_{\mathcal{M}_{ell}^{or}}$, which is sheaf of \mathbb{E}_{∞} -rings on \mathcal{X} . We get a functor $\mathcal{O}_{\mathcal{M}_{ell}}^{Top} : \mathcal{U}^{op} \to \text{CAlg}$. This procedure can be viewed as a construction of elliptic cohomology.

Morava E-theories

Let G_0 be a formal group, we have a Morava E-theory E(n), which corresponds the universal deformation of G_0 , $\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$.

Theorem (Lubin-Tate , 1966)

There is a universal formal group *G* over $R_{LT} = W(k)[[v_1, \dots, v_n - 1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

 $\operatorname{Hom}_{/k}(R_{LT}, A) \to \operatorname{Def}(A).$

Morava E-theories

Let G_0 be a formal group, we have a Morava E-theory E(n), which corresponds the universal deformation of G_0 , $\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$.

Theorem (Lubin-Tate, 1966)

There is a universal formal group *G* over $R_{LT} = W(k)[[v_1, \dots, v_n - 1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

 $\operatorname{Hom}_{/k}(R_{LT}, A) \to \operatorname{Def}(A).$

- 1. Let \hat{G}_0 be a formal group over k, it can be viewed as identity component of a connected classical p-divisible group G_0 over k.
- 2. There exists a universal spectral deformation G over the spectral deformation ring $R_{G_0}^{un}$. Let G^o be the identity component of G, and $R_{G_0}^{or}$ be the orientation classifier of the identity component G^o .
- 3. $E_{G_0} = L_{K_n} R_{G_0}^{or}$ is even periodic, it satisfies the same properties with Morava E-theories.
- 4. Uniqueness of Morava E-theories.

Lurie's Theorem

Theorem (Lurie, 2010-2018)

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible groups, then there is a sheaf of \mathbb{E}_{∞} -rings \mathcal{O}^{Top} on the étale site of M_{pd}^n , such that for any

$$E := \mathcal{O}^{\mathrm{Top}}(\mathrm{Spec} R \xrightarrow{G} M_{pd}^n)$$

we have

$$\operatorname{Spf} \pi_0 E^{\mathbb{C}P^\infty} = G^o$$

where G^o is the formal part of the p-divisible group G.

Problems: The universal objects of deformations with level structures are not étale over M_{pd}^n . How do we lift those objects to spectra version?

Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X/S, a derived relative Cartier divisor is a morphism $D \to X$ such that $D \to X$ is a closed immersion, the ideal sheaf of D is a line bundle over X, and the morphism $D \to S$ is flat, proper and locally almost of finite presentation.

Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X/S, a derived relative Cartier divisor is a morphism $D \to X$ such that $D \to X$ is a closed immersion, the ideal sheaf of D is a line bundle over X, and the morphism $D \to S$ is flat, proper and locally almost of finite presentation.

Theorem (Ma '24)

Suppose that *E* is a spectral algebraic space over a connective \mathbb{E}_{∞} -ring *R*, such that $E \to R$ is flat, proper, locally almost of finite presentation, geometrically reduced, and geometrically connected, then the functor

$$\begin{array}{lll} \mathrm{CDiv}_{E/R} & : & \mathrm{CAlg}_R^{cn} \to \mathcal{S} \\ & & R' \mapsto \mathrm{CDiv}(E_{R'}/R') \end{array}$$

is representable by a spectral algebraic space which is locally almost of finite presentation over R.

Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R is a relative Cartier divisor $D \rightarrow E$ satisfying its restriction to the heart comes from an ordinary A-level structure.

Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R is a relative Cartier divisor $D \rightarrow E$ satisfying its restriction to the heart comes from an ordinary A-level structure.

Theorem (Ma '24)For a spectral elliptic curve E over a connective \mathbb{E}_{∞} -ring R, the functorLevel $_{E/R}$: $\operatorname{CAlg}_R^{\operatorname{cn}} \to S$ $R' \mapsto \operatorname{Level}(\mathcal{A}, E_{R'}/R')$ is representable by an affine spectral Deligne-Mumford stack.

Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral *p*-divisible group, a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure of *G* is a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure

$$\phi: D \to G[p^k]$$

of $G[p^k]$. We let Level(k, G/R) denote the ∞ -groupoid of derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structures of G/R.

Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure of G is a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure

$$\phi: D \to G[p^k]$$

of $G[p^k]$. We let Level(k, G/R) denote the ∞ -groupoid of derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structures of G/R.

Theorem (Ma '24)

Suppose *G* is a spectral *p*-divisible group of height *h* over a connective \mathbb{E}_{∞} -ring R, then the functor

$$\operatorname{Level}_{G/R}^k : \operatorname{CAlg}_R^{\operatorname{cn}} \to \mathcal{S}; \quad R' \to \operatorname{Level}(k, G_{R'}/R')$$

is representable by an affine spectral Deligne-Mumford stack $S(k) = \operatorname{Sp\acute{e}t} \mathcal{P}^k_{G/R}$.

Representability Theorem

Spectral Artin Representability Theorem (Lurie, 2004-2018)

Let $M : \operatorname{CAlg}^{\operatorname{cn}} \to S$ be a functor and R be a Noetherian \mathbb{E}_{∞} -ring such that $\pi_0 R$ is a Grothendieck ring. Suppose $f : M \to \operatorname{Spec} R$ is a natural transformation and we have

1. $M(R_0)$ is *n*-truncated for any discrete commutative ring R_0 ;

- 2. *M* is an étale sheaf;
- 3. *M* admits a connective cotangent complex L_M ;
- 4. *M* is nilcomplete, integrable and infinitesimally cohesive;
- 5. f is locally almost of finite presentation,

then M is representable by a spectral Deligne-Mumford stack which is locally almost of finite presentation over R.

Let $X : CAlg^{cn} \to S$ be a functor. We will say that X is

infinitesimally cohesive, if for every pull-back diagram on the left in CAlg^{cn} such that $\pi_0 A \to \pi_0 B$ and $\pi_0 B' \to \pi_0 B$ are surjective whose kernel are nilpotent ideals in $\pi_0 A$ and $\pi_0 B'$, the induced diagram is a pull-back square in S.

Let $X : \operatorname{CAlg}^{\operatorname{cn}} \to \mathcal{S}$ be a functor. We will say that X is

infinitesimally cohesive, if for every pull-back diagram on the left in CAlg^{cn} such that $\pi_0 A \to \pi_0 B$ and $\pi_0 B' \to \pi_0 B$ are surjective whose kernel are nilpotent ideals in $\pi_0 A$ and $\pi_0 B'$, the induced diagram is a pull-back square in S.

$$\begin{array}{cccc}
A' \longrightarrow A & & X(A') \longrightarrow X(A) \\
\downarrow & & \downarrow_{f} & & & \downarrow_{\chi(f)} \\
B' \xrightarrow{g} B & & X(B') \xrightarrow{X(g)} X(B)
\end{array}$$

nilcomplete, if for every connective E_{∞} -ring R, the canonical map

$$X(R) \to \lim_{\leftarrow n} X(\tau_{\le n} R)$$

is a homotopy equivalence.

Let $X : \operatorname{CAlg}^{\operatorname{cn}} \to \mathcal{S}$ be a functor. We will say that X is

infinitesimally cohesive, if for every pull-back diagram on the left in CAlg^{cn} such that $\pi_0 A \to \pi_0 B$ and $\pi_0 B' \to \pi_0 B$ are surjective whose kernel are nilpotent ideals in $\pi_0 A$ and $\pi_0 B'$, the induced diagram is a pull-back square in S.

$$\begin{array}{cccc}
A' \longrightarrow A & & X(A') \longrightarrow X(A) \\
\downarrow & & \downarrow_{f} & & & \downarrow_{\chi(f)} \\
B' \xrightarrow{g} B & & X(B') \xrightarrow{X(g)} X(B)
\end{array}$$

nilcomplete, if for every connective E_{∞} -ring R, the canonical map

 $X(R) \to \lim_{\leftarrow n} X(\tau_{\le n} R)$

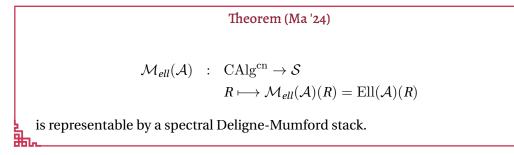
is a homotopy equivalence.

integrable, if for a local Noetherian E_{∞} -ring which is complete with respect to its maximal ideal $m \subset \pi_0 A$, the canonical map

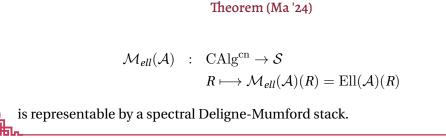
$$X(A) \to \lim_{\leftarrow n} X(A/m^n)$$

is a homotopy equivalence.

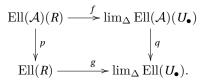
Moduli Stack of Spectral Elliptic Curves with Derived Level Structures



Moduli Stack of Spectral Elliptic Curves with Derived Level Structures



Let $\{R \to U_i\}$ be an étale cover of R, and U_{\bullet} be the associate check simplicial object. We consider the following diagram



p is a left fibration between Kan complexes, so is a Kan fibration. The right vertical map is a pointwise Kan fibration. By picking a suitable model for the homotopy limit, we may assume that q is a Kan fibration as well. We have g is an equivalence.

To prove that f is a equivalence, we only need to prove that for every $E \in Ell(R)$, the map

$$p^{-1}E \simeq \operatorname{Level}(\mathcal{A}, E/R) \to \lim_{\Delta} \operatorname{Level}(\mathcal{A}, E \times_R U_{\bullet}/U_{\bullet}) \simeq q^{-1}g(E)$$

is an equivalence. But this is true due to étaleness of derived level structures.

Spectral Deformations with Derived Level Structures

Suppose G_0 is a *p*-divisible group of height *h* over a perfect F_p -algebra R_0 . We consider the following functor

$$egin{array}{lll} \mathcal{M}_k^{\mathrm{or}} &: & \mathrm{CAlg}_{cpl}^{ad}
ightarrow \mathcal{S} \ & R
ightarrow \mathrm{DefLevel}^{\mathrm{or}}(G_0,R,k) \end{array}$$

where $\operatorname{DefLevel}^{or}(G_0, R, k)$ is the ∞ -category spanned by those quadruples (G, ρ, e, η)

- 1. G is a spectral p-divisible group over R.
- 2. ρ is an equivalence class of G_0 -taggings of R.
- 3. e is an orientation of the identity component of G.
- 4. $\eta: D \to G$ is a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure of G/R.

Spectral Deformations with Derived Level Structures

Suppose G_0 is a *p*-divisible group of height *h* over a perfect F_p -algebra R_0 . We consider the following functor

$$egin{array}{lll} \mathcal{M}_k^{\mathrm{or}} &: & \mathrm{CAlg}_{cpl}^{ad}
ightarrow \mathcal{S} \ & R
ightarrow \mathrm{DefLevel}^{\mathrm{or}}(G_0,R,k) \end{array}$$

where $\text{DefLevel}^{or}(G_0, R, k)$ is the ∞ -category spanned by those quadruples (G, ρ, e, η)

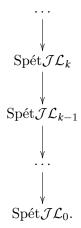
- 1. G is a spectral p-divisible group over R.
- 2. ρ is an equivalence class of G_0 -taggings of R.
- 3. e is an orientation of the identity component of G.

4. $\eta: D \to G$ is a derived $(\mathbb{Z}/p^k\mathbb{Z})^h$ -level structure of G/R.

Theorem (Ma '24)

The functor \mathcal{M}_k^{or} is corepresentable by an \mathbb{E}_{∞} -ring \mathcal{JL}_k , where \mathcal{JL}_k is a finite $R_{G_0}^{or}$ -algebra, $R_{G_0}^{or}$ is the orientation deformation ring of G_0 .

We call this spectrum \mathcal{JL}_k the Jacquet-Langlands spectrum. It is easy to see that this \mathcal{JL}_k admit an action of $GL_h(\mathbb{Z}/p^k\mathbb{Z}) \times \mathbb{G}_n$. When k varies, we have a tower



We call this tower the higher categorical Lubin-Tate tower.

The Langlands duals of Morava E-theories

$$\mathfrak{GD} \ \mathcal{JL} = \lim_{\leftarrow} \mathcal{JL}_k$$

$$\mathfrak{GD} \ \text{We have actions } \mathbb{G}_n \times \mathrm{GL}_n(\mathbb{Z}_p) \curvearrowright \mathcal{JL}.$$

The Langlands duals of Morava E-theories

GD
$$\mathcal{JL} = \lim_{\leftarrow} \mathcal{JL}_k$$

GD We have actions $\mathbb{G}_n \times \operatorname{GL}_n(\mathbb{Z}_p) \curvearrowright \mathcal{JL}$.
GD We define the dual Morava E-theory LE_n to be \mathcal{JL}^{hG_n} .
GD We have convergent spectral sequences

$$E_2^{s,t} \cong H^s_{cts}(\mathbb{G}_n \times GL_n(\mathbb{Z}_p), \pi_t \mathcal{JL}) \Longrightarrow \pi_{t-s} L_{K(n)} S^0.$$

$$E_2^{s,t} \cong H^s_{cts}(GL_n(\mathbb{Z}_p), \pi_t^{\ L}E_n) \Longrightarrow \pi_{t-s}L_{K(n)}S^0.$$

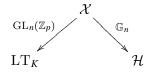
Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded $\mathbb{Q}\text{-algebras}$

$$\mathbb{Q}\otimes \pi_*L_{K(n)}S^0\cong \Lambda_{\mathbb{Q}_p}(\zeta_1,\zeta_2,\cdots,\zeta_n),$$

where the latter is the exterior \mathbb{Q}_p -algebra with generators ζ_i in degree 1 - 2i.

They use the following diagram in their proof.



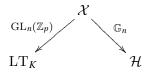
Theorem(Barthel-Schlank-Stapleton-Weinstein, 2024)

There is an isomorphism of graded $\mathbb{Q}\text{-algebras}$

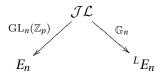
$$\mathbb{Q}\otimes \pi_*L_{K(n)}S^0\cong \Lambda_{\mathbb{Q}_p}(\zeta_1,\zeta_2,\cdots,\zeta_n),$$

where the latter is the exterior \mathbb{Q}_p -algebra with generators ζ_i in degree 1 - 2i.

They use the following diagram in their proof.



It can be lift to the following diagram in the level of spectra.



Thanks for Listening !