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Derived Moduli Problems and New Cohomology Theories



Spectral Stacks

In derived algebraic geometry , we replace commutative rings with simplicial rings,
E∞-ring spectra, and so on. One version of derived algebraic geometry is spectral
algebraic geometry, which replaces commutative rings with E∞-rings.

Definition

Anonconnective spectral Deligne-Mumford stack is a spectrally ringed∞-topos
X = (X ,OX )which locally look likes SpétA, for an E∞ ring A. We say X is a spec-
tral Deligne-Mumford stack, if all such A is connective.

1. We say X = (X ,OX ) is a n-truncated Deligne-Mumford stack if the structure
sheafOX is n-truncated.

2. We say X = (X ,OX ) is a spectral Deligne-Mumford n-stack if X (R0) is
n-truncated for R0 a commutative ring. A spectral algebraic space is a
Deligne-Mumford 0-stack.
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Recognition Criterion

Theorem

A spectrally ringed ∞-topos (X ,OX ) is a nonconnective spectral Deligne-
Mumford stack if and only if it satisfying following conditions:
1. The underlying ringed topos (X♡, π0OX ) is a classical Deligne-Mumford
stack.

2. The canoncial geometric morphism ϕ∗ : X → ShvS(X♡) is étale.
3. The homotopy group πnOX is a quasi-coherent sheaf on (X♡, π0OX ).
4. OX is a hypercomplete sheaf.



Spectral Varieties and Spectral p-Divisible Groups
Definition

A spectral variety X over an E∞-ring R is a nonconnective spectral Deligne-
Mumford stack X, such that τ≥0X → Spetτ≥0R is flat, proper, locally almost of
finite presentation, geometrically reduced and geometrically connected.

Abelian varieties over R : commutative monoidal objects ofVar(R).
Spectral elliptic curves over R: spectral abelian varieties of dimension 1 over R.
Strict elliptic curves over R: abelian group objects ofVar(R)with dimension 1.

Definition

A height h p-divisible group over an E∞-ring A is a functor X : (Abpfin)op →
FFG(A)with the following conditions:
1. X (0) is trivial.
2. X send exact sequence to fiber sequence.
3. X(M) has degree |M |h over A for a finite p-groupM.
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Deformations and Orientations
Let G0 be a p-divisible group over R0, a spectral deformation of G0 along ρA : A → R0 is
a pair (G, α), where G is a spectral p-divisible group over A and α : G0 ' ρ∗AG .

Theorem (Lurie '18)

There exists a connectiveE∞-ring RunG0
with amorphism ρ : RunG0

→ R0, such that
for other ρA : A → R0, the extension of scalars induces an equivalence of ∞-
categories

MapCAlg/R0
(RunG0

,A) → DefG0(A, ρA).

An orientation of an 1-dimensional spectral formal group G over an E∞-ring R is
a map e : S2 → Ω∞G(τ≥0R)which satisfies certain conditions.

Theorem (Lurie '18)

There exists an E∞-ringDG and e ∈ Or(XDG ), such that for other R′ ∈ CAlgR

MapCAlgR(DG ,R′) → Or(GR′).



Elliptic Cohomology
An elliptic cohomology consists of a triple (E ,C , ϕ), where E is an even periodic
spectrum, C is an elliptic curve C over π0E , ϕ : GE ∼= Ĉ is an isomorphism of group.

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheafOtmf of E∞-ring spectra over the stackMell for the étale topol-
ogy. For any étale morphism f : Spec(R) → Mell , there is a natural structure of
elliptic spectrum (Otmf (f ),Cf , ϕ), satisfying π0Otmf (f ) = R, andCf is a general-
ized elliptic curve over R classified by f.

There exists a nonconnective spectral Deligne-Mumford stackMor
ell such that

MapSpDMnc (SpétR,Mor
ell)

∼= Ellor(R)≃

The étale topos U ofMell is the full subcategory of the underlying toposX ofMs
ell .

We have a map ϕ : Mor
ell → Ms

ell , we consider the direct image sheaf ϕ∗OMor
ell
,

which is sheaf of E∞-rings onX . We get a functorOTop
Mell

: Uop → CAlg. This
procedure can be viewed as a construction of elliptic cohomology.
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Morava E-theories
Let G0 be a formal group, we have a Morava E-theory E(n), which corresponds the
universal deformation of G0, π∗E(n) = W (k)[[v1, · · · , vn−1]][β±1].

Theorem (Lubin-Tate，1966)

There is a universal formal group G over RLT = W (k)[[v1, · · · , vn − 1]] in the
following sense: for every infinitesimal thickening A of k, there is a bijection

Hom/k(RLT ,A) → Def(A).

1. Let Ĝ0 be a formal group over k, it can be viewed as identity component of a
connected classical p-divisible group G0 over k.

2. There exists a universal spectral deformation G over the spectral deformation
ring RunG0

. Let Go be the identity component of G, and RorG0
be the orientation

classifier of the identity component Go.
3. EG0 = LKnRorG0

is even periodic, it satisfies the same properties with Morava
E-theories.

4. Uniqueness of Morava E-theories.
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Lurie'sTheorem

Theorem (Lurie，2010-2018)

LetMn
pd denote themoduli stack of one dimensional height n p-divisible groups,

then there is a sheaf ofE∞-ringsOTop on the étale site ofMn
pd , such that for any

E := OTop(SpecR G→ Mn
pd)

we have
Spfπ0ECP∞

= Go

where Go is the formal part of the p-divisible group G.

Problems: The universal objects of deformations with level structures are not étale
overMn

pd . How do we lift those objects to spectra version?



Derived Relative Cartier Divisors

For a spectral Deligne-Mumford stack X/S, a derived relative Cartier divisor is a
morphismD → X such thatD → X is a closed immersion, the ideal sheaf of D is a line
bundle over X , and the morphismD → S is flat, proper and locally almost of finite
presentation.

Theorem (Ma '24)

Suppose that E is a spectral algebraic space over a connective E∞-ring R, such
that E → R is flat, proper, locally almost of finite presentation, geometrically
reduced, and geometrically connected, then the functor

CDivE/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic spacewhich is locally almost of finite pre-
sentation over R.
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Derived Level Structures of Spectral Elliptic Curves

For A a finite abelian group, a derived A-level structure of a spectral elliptic curve E/R
is a relative Cartier divisorD → E satisfying its restriction to the heart comes from an
ordinary A-level structure.

Theorem (Ma '24)

For a spectral elliptic curve E over a connective E∞-ring R, the functor

LevelE/R : CAlgcn
R → S

R′ 7→ Level(A,ER′/R′)

is representable by an affine spectral Deligne-Mumford stack.
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Derived Level Structures of Spectral p-Divisible Groups

Let G/R be a height h spectral p-divisible group, a derived (Z/pkZ)h-level structure of
G is a derived (Z/pkZ)h-level structure

ϕ : D → G[pk ]

of G[pk ]. We let Level(k,G/R) denote the∞-groupoid of derived (Z/pkZ)h-level
structures of G/R.

Theorem (Ma '24)

Suppose G is a spectral p-divisible group of height h over a connective E∞-ring
R, then the functor

LevelkG/R : CAlgcn
R → S; R′ → Level(k,GR′/R′)

is representable by an affine spectral Deligne-Mumford stack S(k) = SpétPk
G/R.
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RepresentabilityTheorem

Spectral Artin RepresentabilityTheorem (Lurie，2004-2018)

LetM : CAlgcn → S be a functor and R be a Noetherian E∞-ring such that π0R
is a Grothendieck ring. Suppose f : M → SpecR is a natural transformation and
we have
1.M(R0) is n-truncated for any discrete commutative ring R0;
2.M is an étale sheaf;
3.M admits a connective cotangent complex LM ;
4.M is nilcomplete, integrable and infinitesimally cohesive;
5. f is locally almost of finite presentation,

then M is representable by a spectral Deligne-Mumford stack which is locally
almost of finite presentation over R.



Let X : CAlgcn → S be a functor. We will say that X is
infinitesimally cohesive, if for every pull-back diagram on the left inCAlgcn such that
π0A → π0B and π0B′ → π0B are surjective whose kernel are nilpotent ideals in π0A and
π0B′, the induced diagram is a pull-back square in S .

A′

��

// A

f
��

B′
g // B

X (A′) //

��

X (A)

X(f )
��

X (B′)
X(g) // X (B)

nilcomplete, if for every connective E∞-ring R, the canonical map

X (R) → lim
←n

X (τ≤nR)

is a homotopy equivalence.

integrable, if for a local Noetherian E∞-ring which is complete with respect to its
maximal idealm ⊂ π0A, the canonical map

X (A) → lim
←n

X (A/mn)

is a homotopy equivalence.
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Moduli Stack of Spectral Elliptic Curves with Derived Level Structures

Theorem (Ma '24)

Mell(A) : CAlgcn → S
R 7−→ Mell(A)(R) = Ell(A)(R)

is representable by a spectral Deligne-Mumford stack.

Let {R → Ui} be an étale cover of R, andU• be the associate check simplicial object.
We consider the following diagram

Ell(A)(R)
f //

p
��

lim∆ Ell(A)(U•)

q
��

Ell(R)
g // lim∆ Ell(U•).

p is a left fibration between Kan complexes, so is a Kan fibration. The right vertical
map is a pointwise Kan fibration. By picking a suitable model for the homotopy limit,
we may assume that q is a Kan fibration as well. We have g is an equivalence .
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To prove that f is a equivalence, we only need to prove that for every E ∈ Ell(R), the
map

p−1E ' Level(A,E/R) → lim
∆

Level(A,E ×R U•/U•) ' q−1g(E)

is an equivalence. But this is true due to étaleness of derived level structures.



Spectral Deformations with Derived Level Structures
Suppose G0 is a p-divisible group of height h over a perfect Fp-algebra R0. We consider
the following functor

Mor
k : CAlgadcpl → S

R → DefLevelor(G0,R, k)

whereDefLevelor(G0,R, k) is the∞-category spanned by those quadruples (G, ρ, e, η)
1. G is a spectral p-divisible group over R.
2. ρ is an equivalence class of G0-taggings of R.
3. e is an orientation of the identity component of G.
4. η : D → G is a derived (Z/pkZ)h-level structure of G/R.

Theorem (Ma '24)

The functorMor
k is corepresentable by an E∞-ring JLk , where JLk is a finite

RorG0
-algebra, RorG0

is the orientation deformation ring of G0.
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We call this spectrum JLk the Jacquet-Langlands spectrum. It is easy to see that this
JLk admit an action of GLh(Z/pkZ)×Gn. When k varies, we have a tower

· · ·

��
SpétJLk

��
SpétJLk−1

��
· · ·

��
SpétJL0.

We call this tower the higher categorical Lubin-Tate tower.



TheLanglands duals of Morava E-theories

JL = lim
←

JLk

We have actionsGn × GLn(Zp) ↷ JL.

We define the dual Morava E-theory LEn to be JLhGn .
We have convergent spectral sequences

E s,t2
∼= H s

cts(Gn × GLn(Zp), πtJL) =⇒ πt−sLK (n)S0.

E s,t2
∼= H s

cts(GLn(Zp), πt
LEn) =⇒ πt−sLK (n)S0.
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Theorem(Barthel-Schlank-Stapleton-Weinstein，2024)

There is an isomorphism of gradedQ-algebras

Q⊗ π∗LK (n)S0 ∼= ΛQp(ζ1, ζ2, · · · ζn),

where the latter is the exteriorQp-algebra with generators ζi in degree 1− 2i.

They use the following diagram in their proof.

X
GLn(Zp)

}}zz
zz
zz
zz Gn

��@
@@

@@
@@

@

LTK H

It can be lift to the following diagram in the level of spectra.

JL
GLn(Zp)

}}||
||
||
|| Gn

!!D
DD

DD
DD

D

En LEn
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Thanks for Listening !
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