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Abstract. Using the R((X))-measure, we define and study some spaces of
certain C((X))-valued functions on GLn(F ) for F a two-dimensional local
filed. In particular, we define the convolution product on such function spaces,
which leads us to define the Hecke algebra of GLn(F ). We define and study
the measurable C((X))-representation of GLn(F ), and we prove that these
function spaces are candidates for such representations.
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1. Introduction

The concept of an n-dimensional field was first introduced by Parshin in 1970s,
which aims to generalizing the classicial adelic formalism to n-dimensional schemes.
An n-dimensional field is a complete discrete field with residue field an (n − 1)-
dimensional local field. A 0-dimensional field is just a finite field.

It is an important topic in number theory to study representations of algebraic
groups over 0- and 1-dimensional local fields. Since the properties of finite fields
of local fields, for example, the topology of local fields. People know many things
about their representations. But for algebraic groups over two-dimensional local
fields, people know little about their representations. In [Kap01], Kapranov study
the central extension Γ of a reductive group G over a two-dimensional local field
F = K((t)), where K is a 1-dimensional local field. They choose an appropriate
subgroup ∆1 ⊂ Γ, such that the fibres of the Hecke correspondences are locally
compact spaces which can define invariant measures, so they can define the Hecke
operators by integrating these measures. They proved that such Hecke algebra
H(Γ,∆1) is isomorphic to the double affine Hecke algebra associated to G. After
that, Gaitsgory and Kazhdan give a categorical framework of Kapranov’s idea.
They study representations in pro-vector spaces, see [GK04, GK05, GK06] for more
details and [BK06] for more examples.
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On the other hand, I. Fesenko constructed a R((X))-measure on two-dimensional
local fields [Fes03], such that we can do harmonic analysis on two-dimensional local
fields. H. Kim and K. H. Lee use the Cartan decompositions to define the generators
and relations of spherical Hecke algebra of SL2 [KL04]. In particular, they proved
the Satake isomorphism by using the R((X))-measures. And one can see [Lee10]
for the construction of Iwahori-Hecke Algebra for SL2 over a 2-dimensional local
field.

There is another strategy to study Hecke algebra of reductive groups over two-
dimensional local fields. In [BK11], Braverman and Kazhdan consider the subgroup
G+

aff of Gaff , where Gaff is the semidirect product of Gm and the central extension G̃

of G((t)). They proved that any double cosets of Gaff(O) inside G+
aff is well defined

and give rise to an algebra structure on a suitable space of Gaff(O)-biinvariant
functions on G+

aff(K). They call it the spherical Hecke algebra of Gaff . And in
[BKP16], the authors use WX = W ⋉ X, the semidirect product of the Weyl
group with the Tits cone, to identify the double cosets I \G+

aff/I. By studying the
combinatorics of the Tits cone X, they define the Iwahori-Hecke algebra of Gaff .

The present paper gives a new construction of Hecke algebra of GLn(F ) for
F a two-dimensional local field by using Fesenko’s R((x))-measure and Morrow’s
work [Mor08] on integration on GLn(F ). Specifically, we define an appropriate
space of functions f : GLn(F ) → C((X)) and prove that there is a well-defined
convolution product in this space. We define and study a kind of representation
called measurable representations. The typical example is the function space that
we defined. We also introduce the automorphic forms on 2-dimensional adelic spaces
defined by I. Fesenko.

We now give the structure of this paper. In section 2, we first review the basic
definition and properties of higher-dimensional local fields. After that, we review
the topology and measures on two-dimensional local fields. We then introduce
the integration on GLn(F ) for F a two-dimensional local field. We define the
spaces LH(GLn(F )) consisting of functions f : GLn(F ) → C((X)) satisfing certain
conditions. We define the convolution product on LH(GLn(F )), make LH(GLn(F ))
be an associative algebra, called the Hecke algebra of GLn(F ).

In section 3, we define the measurable representations of GLn(F ), and prove
that the function space LHGLn(F ) is a measurable representation. This makes us
establish a relation between the Hecke modules with measurable representations.

In section 4, we introduce the adelic spaces over 2-dimensional arithmetic ob-
jects. We then introduce the automorphic forms over two-dimensional adelic spaces
suggested by Fesenko.

Acknowledgements.The author thanks Ivan Fesenko for his support of this
research and discussions about related topics of this work. The author also thanks
Kye-Huan. Lee for helpful discussions. This work was supported by ***** grant
********.

2. Integration on GLn(F )

2.1. Definition of two-dimensional local fields.

Definition 2.1. A 0-dimensional local field is a finite field. For n ≥ 1, an n-
dimensional local field is a complete discrete valuation field whose residue field is
an (n− 1)-dimensional local field.
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Example 2.2. One-dimensional local fields

(1) R, C;
(2) Fq((t));
(3) Finite extension of Qp.

Example 2.3. Two-dimensional local fields

(1) Fq((t1))((t2));
(2) E((t)) over a local nonarchimedean field E;
(3) E((t)) over a local archimedean field E;
(4) Finite extensions of Qp{{t}}.

Theorem 2.4. Let F be an n-dimensional local field.

(1) If charF ̸= 0 then

F ∼= F (n)((t1)) · · · ((tn)),

where F (n) is a finite field.
(2) If charF (n−1) = 0 then

F ∼= F (n−1)((t1)) · · · ((tn−1)),

where F (n−1) is a one-dimensional local field of characteristic 0.
(3) In the remaining case, Let 2 ≤ r ≤ n be the unique integer such that

charF (n−r) = 0 ̸= charF (n+1−r). Then F is isomorphic to a finite extension
of

Q{{t1}} · · · {{tr−1}}((tr+1)) · · · ((tn))

where Qq is the unramified extension of Qp with residue field of F (n).

If n = 0, we define O0
F = F . If n ≥ 0, we define On

F := {x ∈ OF : x ∈ O(n−1)

F
},

where O(n−1)

F
is the rank n− 1 ring of integers of F , a field of discrete valuation of

dimension ≥ n− 1.

F ⊃ OF = O(1)
F ⊃ O(2)

F ⊃ · · · ⊃ O(n)
F .

Suppose that F is a complete valuation field, and t ∈ F is uniformizer, then we
have

F = OF [t
−1], F× ∼= O×

F × tZ,

where tZ denote the infinite cyclic group of F× generated by t.

Definition 2.5. A sequence of n-local parameters t1, · · · , tn ∈ F is a sequence of
elements satisfying:

(1) tn is a uniformizer of F .
(2) The reduction t1, · · · , tn−1 of t1, · · · , tn−1 form a sequence of local param-

eter for the field F̄ of dimension n− 1.

Proposition 2.6. Suppose that F is an n-dimensional local field , then we have

F = O
(n)
F [t−1

1 , · · · , t−1
n ], and F× ∼= (On

F )
× × tZ1 × · · · × tZn.
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2.2. Topology of two-dimensional local fields. For a p-adic local field K, the
topology of K is the p-adic topology whose basic open neighbourhoods of 0 are
{x||x| ≤ 1/pn}n≥0.

Lemma 2.7. Let X be a Hausdorff topological space, following conditions are equiv-
alent:

(1) X is locally compact and totally disconnected;
(2) X has a basis consisting of open compact sets.
(3) Each point of X has an open neighbourhood that is a profinite space.

Equal characteristic case Suppose that K is a field equipped with a topology
satisfies the following conditions:

(1) The topology is Hausdorff;
(2) The addition, and multiplication by a fixed element α ∈ K, are all contin-

uous maps
Following [Par84], we can define a topology on 2-dimensional local fields.

Definition 2.8. Let F = K((t)) be the field of formal Laurent series over K. We
define a topology on F by setting the basic neighbourhoods of 0 are those of the
form ∑

i

Uit
i :=

{∑
i

ait
i ∈ F |ai ∈ Ui for all i

}
,

where (Ui)
∞
i=−∞ are open neighbourhoods of 0 such that Ui = K for all i ≫ 0. The

basic open neighbourhoods of any other point f ∈ F are f +U , where Ui are basic
neighbourhoods of 0.

Remark 2.9. (1) If the topology on K is the discrete topology. Then the topol-
ogy of K((t)) just described will be the usual discrete valuation topology.

(2) If F ∼= K((t)), then the topology of F may depend on the choice of isomor-
phism.

(3) If K is a one-dimensional local field, such as Qp. They are all topological
fields. But K((t)) is not a topological field, since the multiplication and
inverse are not continuous.

If we have a topology field F , then for any F -vector space V ∼= Kn, we can equip
V with the product topology. This topology doesn’t depend on the choice of the
basis. Let Mn(F ) denote the set of n× n matrices whose items are elements of F .
We define the topology on Mn(F ) as the product topology. Using the embedding

GLn(F ) → (Mn(F ),Mn(F )), A 7→ (A,A−1)

We can define the topology on GLn(F ). Generally, we have the following theorem,
details can be found in [GH24, Theorem 2.2.1].

Proposition 2.10. Let R be a topological ring and let X be an affine scheme of
finite type over R. There exists a unique way to topologize X(R) such that

(1) the topology is functorial in X, that is, if X → Y is a morphism then the
induce map X(R) → Y (R) is continuous;

(2) the topology is compatible with fibre products, that is if X → Y and Z →
Y are morphisms, then the topology on (X ×Y Z)(R) is the fibre product
topology;

(3) closed immersions X ↪→ Y induced topological embeddings X(R) ↪→ Y (R);
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(4) if X = Spec(R[t]), then X(R) is homeomorphic with R under the natural
identification X(R ∼= R.

If we have an algebraic group G, the above proposition makes G(F ) become a
topological group. But if F is a two-dimensional local field, F is not a topolog-
ical field. It’s difficult to discuss the topology of G(F ), which makes G(F ) be a
topological group.

2.3. Measures and integrations of two-dimensional local fields. In the fol-
lowing contents, F is a two-dimensional local field with first residue filed E and
second residue field Fq, rank one integers O, rank two integers O, local parameters
are t1, t2.

Let A be the minimal ring generated by the distinguished sets {α + ti2t
j
1O}.

Elements of A can be written as a finite disjoint union sets An, where each An is
a different between a distinguished set and a finite union of distinguished sets.

Proposition 2.11. ([Fes03]) There is a unique measure µ on F with values in
R((X)) which is a translation invariant and finitely addictive such that

µ(ti2t
j
1O) = q−jXi.

Example 2.12. We have µ(O) = 1 and µ(ti2p
−1(S)) = XiµE(S), where µE is the

normalized Haar measure on E such that µE(O(E)) = 1 and S is a compact open
subsets of E.

We call a sum ∑
n

∑
i

ai,nX
i

is absolutely convergent if
(1) there is i0 such that ai,n = 0 for all i ≤ i0 and all n;
(2) for every i the series

∑
n ai,n absolutely convergent in C.

Remark 2.13. The measure on F is additive in the following sense: suppose that
{An} are countably many disjoint sets of A such that UAn ∈ A and

∑
µ(An)

absolutely converges in C((X)).

Having a measure of F , we can define the integrations. We consider functions
f : F → C((X)).

(1) For any A ∈ A, we can consider the charA, we define∫
F

charA = µ(A)

(2) For functions f can be written as
∑

cncharAn +
∑

aichar{pi}, where {An}
are countably disjoint measurable sets in A, cn ∈ C((X)) such that

∑
cnµ(An)

is absolutely converges in C((X)), and {p1, · · · , pm}} is a collection of
finitely many points. We define∫

F

(
∑

cncharAn +

k∑
i=1

aichar{pi})dµ =
∑

cnµ(An).

Since A contains a+ tj2p
−1(S), for S a compact open subsets in E. We have∫

F

chara+tj2p
−1(S)dµ = µE(S)X

j .



6 XUECAI MA

If we suppose the coefficients ck ∈ C. Then∫
F

∑
k

ckchara+ti2t
jk
1 O

dµ =
(∑

ckq
−jk
)
Xi =

(∫
E

∑
ckchar

E

t
jk
1 OE

dµE

)
Xi =

(∫
E

fdµE

)
Xi,

for some f ∈ L(E). The integration defined above can also be defined by the
following setting, see [Mor10] for more details.

(1) First, we let L(E) denote the space of locally constant integrable functions
g on E.

(2) For g ∈ L(E), a ∈ F, i ∈ Z, we define a function on F by

ga,i(x) =

{
g ◦ p((x− a)t−i

2 ) x ∈ a+ ti2E[[t2]]
0 otherwise

(3) A simple function on F is a C(((X))-valued function of the form

x 7→ ga,i(x)Xj

for some g ∈ L(E), a ∈ F , i, j ∈ Z.
(4) Let L(F ) denote the space of all C((X))-valued functions spanned by simple

functions.
(5) For simple functions, define∫

F

ga,i(x)dx = (

∫
E

g(u)du)Xi,

and extend it to all functions in L(F ).

2.4. Integrations on GLn of a two-dimensional local field. We first review
the approach of [Mor08]. We consider the integration on Fn The important thing
of repeated integral is the Fubini property, says that for a function

f : Fn → C((X)),

and for each permutation σ of {1, · · · , n}, the expression∫ F

· · ·
∫ F

f(x1, · · · , xn)dxσ(1) · dxσ(n)

is well defined and its value doesn’t depend on σ.
(1) Let L(En) denote the space of functions f : En → C which are Fubini.
(2) For every g ∈ L(En), and every (a1+· · ·+an) ∈ Fn, γ = (γ1, · · · , γn) ∈ Zn.

The product of translated fraction ideals is given by

a+ tγ2On
F =

∏
ai + tγi

2 OF ∈ Fn.

We define

ga,γ(x) =

{
g((x− a)t−γ

2 ) x ∈ a+ tγ2On
F

0 otherwise.

(3) We define ∫
Fn

ga,γ(x)dx =

(∫
En

gdµEn

)
X

∑n
i=1 γi .
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(4) A complex function f : EN → C is called GL-Fubini if and only f ◦ τ is
Fubini for all τ ∈ GLn(F ). Let L(Fn,GLn) denote the C((X)) space-valued
functions spanned by

ga,γ ◦ τ, τ ∈ GLn(F ), a ∈ Fn, γ ∈ Zn.

Theorem 2.14. ([Mor08, Theorem 3.4]) Every function in L(Fn,GLn) is Fubini
on Fn. If f ∈ L(Fn, GLn), a ∈ Fn, τ ∈ GLn(F ), then the functions x 7→ f(x+ a)
and x 7→ f(τx) also belongs to L(Fn,GLn), and the repeated integrals are given by∫

Fn

f(x+ a)dx =

∫
Fn

f(x)dx,∫
Fn

f(τx)dx = | det τ |−1

∫
Fn

f(x)dx.

Now, we consider the integration on GLn(F ). Let T : Fn2 → MN (F ) be the
isomorphism from the vector space Fn2

to the vector space of n× n matrices. Let
L(Mn(F )) be the space of C((X))-valued functions f such that f ◦ T belongs to
L(Fn,GLn), and we define∫

Mn(F )

f(x)dx =

∫
Fn2

f ◦ T (x)dx.

Let L(Gn(F )) denote the space of C((X))-valued functions ϕ on GLn(F ) such that
τ 7→ ϕ(τ)| det τ |−n extends to a function of L(M). We define the integral of ϕ over
GLn(F ) is defined by∫

GLn(F )

ϕ(τ)dτ =

∫
MN (F )

ϕ(x)| det(x)|−ndx.

For any g ∈ L(GLn(E)), we can define g0 : GLn(F ) → C((X)) by

g0(x) =

{
g(x) x ∈ GLn(OF ).
0 otherwise.

Proposition 2.15. The integral defined above has the following properties:
(1) The integral is well defined, which means that if f1, f2 ∈ L(Mn(F )) are

equal when restricted to GLn(F ), then f1 = f2.
(2) Suppose that ϕ ∈ L(GLn(F )) and σ ∈ GLn(F ). Then τ 7→ ϕ(τσ) and

τ 7→ ϕ(τσ) also belongs to L(GLn(F )), with∫
GLn(F )

ϕ(στ)dτ =

∫
GLn(F )

f(τ)dτ =

∫
GLn(F )

ϕ(τσ)dτ.

(3) Suppose that g is a complex valued Schwartz-Bruhat function on GLn(E)
such that

f(x) =

{
g(x)| detx|−n x ∈ GLn(E)
0 detx = 0

is GL-Fubini on Mn(E). Then g0 belongs to L(GLn(F )), and∫
GLn(F )

g0(τ)dτ =

∫
GLn(E)

g(u)du.

Proof. These follows from[Mor08, Remark 4.3, Proposition 4.4, Proposition 4.8].
□
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Remark 2.16. Using these definitions of [Mor08], we find that∑
ck

n∏
i=1

µ(aki +t
γk
i

2 t
eki
1 On) =

∑
ck

n∏
i=1

t
−eki
1 Xγk

i =
∑

ck

(
(
∏

µE(t
eki
1 OE))X

∑
γk
i

)
.

We then have∑
ck

n∏
i=1

µ(aki + t
γk
i

2 t
eki
1 On) =

∑
ck

(
(

∫
En

fkdµEn)X
∑

i γ
k
i

)
.

Like the one-dimensional case, a distinguished set of Fn is of the form
n∏

i=1

ai + tγi

2 tei1 O, ai, bj ∈ Z,

and its measure is µ(
∏n

i=1 ai + tγi

2 tei1 O) =
∏n

i=1 µ(ai + tγi

2 tei1 O) =
∏n

i=1 q
−eiXγi .

Let Adist
Fn be the collection of distinguished sets and let AFn be the minimal ring

generated by the distinguished set. Then for finitely many disjoint sets Ak ∈ AFn

,
we have

∑N
i=1 ckAk =

∑
ckµ(Ak).

Remark 2.17. Generally, it is not easy to define distinguished sets of GLn, since
usually the measure on GLn(F ) should be | detx|−ndMn(F )x, but the determinant
is not usually a constant.

2.5. Convolution product of integrable functions over GLn(F ). For any
g : GLn(E) → C, A ∈ Mn(F ),Γ = (γi,j)1≤i,j≤n. Let A + tΓ2Mn(O) denote set of
matrices (ai,j + t

γi,j

2 O)1≤i,j≤n ,we can define gA,Γ : GLn(F ) → C((X)) by

gA,Γ(x) =

{
g((x−A)t−Γ

2 ) x ∈ A+ tΓ2Mn(O) and detx ̸= 0,
0 otherwise,

It is easy to find g0 = g0,0. Similarly for any g : Mn(E) → C, we can define
gA,Γ : MN (F ) → C((X)).

Definition 2.18. Let V be a subset of GLn(F ), we will say that V is a measurable
subset if charV belongs to L(GLn(F )), i.e., charV | detx|−n extends to a function
in L(Mn(F )).

Lemma 2.19. For any two sets of the form τ(
∏

1≤i≤n(ai+tγi

2 O)), τ ∈ GLn(F ),their
intersection is either empty or also has this form.

Proof. Since in a two-dimensional local field F , if we have two sets a + tγa

2 O and
b+ tγb

2 , then their intersection is either empty or one contains the other. Thus for
two sets of the form

∏
(ai,+tγi

2 O) and
∏
(bi + tδi2 O), their intersection is

(1) empty, if there is a i such that ai + tγi

2 ∩ bi + tδi2 = ∅;
(2)

∏
ci + tξi2 O, where (ci + tξi2 O) equals ai + tγi

2 O or bi + tδi2 O.
Since for τ ∈ GLn(F ), we have τ(

∏
1≤i≤n(ai+tγi

2 O)) also has the form
∏

1≤i≤n(di+

tζi2 O), we get the desired conclusion. □

Lemma 2.20. For f1, f2 ∈ L(Fn, GLn(F )), we have f1 · f2 ∈ L(Fn,GLn(F )).

Proof. It is sufficient to prove for f1 = gA1,Γ1

1 ◦ τ1, f2 = gA2,Γ2

2 ◦ τ2. By the
Lemma 2.19, we have either Suppf1 ∩ Suppf2 = ∅ or Suppf1 ∩ Suppf2 = A +
tΓ2On =

∏
1≤i≤n ai + tγi

2 O. If Suppf1 ∩ Suppf2 = ∅, then f1.f2 = 0. If Suppf1 ∩
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Suppf2 =
∏

1≤i≤n ai + tγi

2 O, we have gA1,Γ1

1 ◦ τ1|Suppf1∩Suppf2 = gA,Γ
1 and ga2,Γ2

2 ◦
τ2|Suppf1∩Suppf2 = gA,Γ

2 , thus f1 · f2 = (g1 · g2)A,Γ. □

Corollary 2.21. For f1, f2 ∈ L(Mn(F )), we have f1 · f2 ∈ L(Mn(F )).

Lemma 2.22. Let g be a function on GLn(E) such that

f(x) =

{
g(x)| detx|−n x ∈ GLn(E)
0 detx = 0

is GL-Fubini on MN (E) . For any A ∈ Mn(F ),Γ ∈ Mn(Z), σ ∈ GLn(F ) such that
A+ tΓ2Mn(O) ∩GLn(F ) be a measurable set, we have gA,Γ ◦ rσ ∈ L(GLn(F )).

Proof. Since
∫
GLn(F )

is translation invariant, it is sufficient to prove the proposition
for gA,Γ. We have

gA,Γ(x) =

{
g((x−A)t−Γ

2 ) x ∈ (ai,j + t
γi,j

2 O)1≤i,j≤n and detx ̸= 0,
0 otherwise.

To prove that it belongs to L(GLn(F )), we must have gA,Γ(x)| detx|−n extends
to a function in L(Mn(F )). We already have gA,Γ belongs to L(Mn(F )), and
charSupp

gA,Γ
| detx|−n also belongs to L(Mn(F )). The results follows from Corollary

2.21.
□

We know that Bruaht-Schwartz functions are GL-Fubini functions. We now give
an intermediate space of our study.

Definition 2.23. We let LS(GLnF ) denote the the C((X))- subspace of L(GLn(F ))
consists of functions f : GLn(F ) → C((X)) generated by

gA,Γ ◦ rσ, A ∈ Mn(F ),Γ = (γi,j)1≤i,j≤n

which satisfies
(1) g is a complex valued Bruhat-Schwartz function on GLn(E),

(2) f(x) =

{
g(x)| detx|−n x ∈ GLn(E)
0 detx = 0

is GL-Fubini on Mn(E) , and

(3) the support of gA,Γ ◦ rσ is a measurable subset.

Lemma 2.24. For any f1, f2 ∈ LS(GLn(F ), f1 · f2 ∈ LS(GLn(F )).

Proof. With loss of generality, we may suppose that f1 = gA1,Γ1

1 ◦ rσ1 , f2 = gA2,Γ2

2 ◦
rσ2

. By the proof of Lemma 2.20, we see that f1 · f2 = g′A
′,Γ′

, since we have
Bruhat-Schwartz are compactly generated functions and so their product, we get
f1 · f2 ∈ Ls(GLn(F )). □

Definition 2.25. We let LH(GLn(F )) denote the spaces of functions f : GLn(F ) →
C((X)), such that f(x), f( 1x ), charSuppf ∈ LS(GLn(F )).

Definition 2.26. For every f1, f2 ∈ LH(GLn(F )), we define the convolution prod-
uct of f1 and f2 to be

f1 ∗ f2(y) :=
∫
GLn(F )

f1(yg
−1)f2(g)dg.

Lemma 2.27. For any f1, f2 ∈ LH(GLn(F ), f1 ∗ f2 ∈ LH(GLn(F )).
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Proof. We may assume f1 = gA1,Γ1

1 ◦ rσ1
, f2 = gA2,Γ2

2 ◦ rσ2
. Then we have gA1,Γ1

1 ◦
rσ1

(yx−1)gA2,Γ2

2 ◦ rσ2
(x) belongs to Ls(GLn(F )), and | detx|−n also belongs to

Ls(GLn(F )). Then we have

f1 ∗ f2(y) :=
∫
GLn(F )

f1(yg
−1)f2(g)dg =

∫
Mn(F )

f1(yx
−1)f2(x)| detx|−ndx

=

∫
Mn(F )

(gA1,Γk

1 ◦ rσ1(yx
−1))(gA2,Γ2

2 ◦ rσ2(x))(
∑

awg
Aw,Γw
w ◦ rσw(x))dx

We notice that f1(yx
−1) = f1((y

−1x)−1) also belongs to LS(GLn(F )), and by the
intersection properties of those A+ tΓ2MN (O). The above formula equals∫

Fn2

(
(
∑

akg
Ak,Γk

k ◦ rσk
)gA2,Γ2

2 ◦ rσ2(
∑

awg
Aw,Γw
w ◦ rσw)

)
◦ T (x)dx

=
∑
w,k

aw,k

∫
Fn2

(
g
Aw,k,Γw,k

k ◦ rσw,k
(y−1x) · gAw,k,Γw,k

2 ◦ rσw,k
(x) · gAw,Γw

w ◦ rσw,k
(x)
)
◦ T (x)dx

=
∑
w,k

aw,k| det rσ,w|−1

(∫
En2

gkg2gwT̄ (x)dx

)
X

∑
i,j(Γw,k)i,j

We have
∫
Fn2

(
g
Aw,k,Γw,k

k ◦ rσw,k
(y−1x) · gAw,k,Γw,k

2 ◦ rσw,k
(x) · gAw,Γw

w ◦ rσw,k
(x)
)
◦

T (x)dx is a Bruhat-Schwartz function with variable y by a following lemma, thus
f1∗f2(y) belongs to LS(GLn(F )). Using the same way, we can prove that f1∗f2( 1y )
and charSuppf1∗f2 also belongs to LS(GLn(F )). □

Lemma 2.28. The function
∫
Fn2 g

A,Γ
1 · rσ1

(y−1x)g
A,Γ
1 · rσ1

(x) ◦ Tdx with variable
y can be written as gA,Γ(y) for some Bruhat-Schwartz function g, and A ∈ Mn(F )
and Γ ∈ Mn(Z).

Proof. We may assume g = charK for some compact open K ⊂ E. Let V =
rσ1

(A+ tΓ2p
−1K)∫

Fn2
g
A,Γ
1 · rσ1

(y−1x)g
A,Γ
1 · rσ1

(x) ◦ Tdx =

∫
Fn2

charV (y
−1x)charV (x) ◦ Tdx

To make charV (y
−1x)charV (x) nonzero, we must have A ∈ tΓ2Mn(O). Moreover

the integration is equal to charp−K = (charEK)0.0. □

Theorem 2.29. There is an C((X))-associative algebra structure on the space
LH(GLn(F )), we denote the corresponding algebra by H, and call it the Hecke
algebra of GLn(F ).

Proof. We have proved that the convolution product is well-defined. The addition
is C((X))-linear by definition. We need to check that the convolution product is
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associative. For f1, f2, f3 ∈ Cm(G(F )). We have f1 ∗ (f2 ∗ f3)(y) =

=

∫
G(F )

f1(yg
−1)

(∫
G(F )

f2(gh
−1)f3(h)dh

)
dg

=

∫
Fn2

f1 ◦ Ta(yg
−1)

(∫
Fn2

f2 ◦ Tb(gh
−1)f3 ◦ Tb(h)| detTbh|−ndh

)
| detTag|−ndg

=

∫
F 2n2

f1 ◦ Ta(yg
−1)f2 ◦ Tb(gh

−1)f3 ◦ Tb(h)| detTbh|−n| detTag|−ndhdg

By the Fubini properties of our integral, we can reverse the order of integration.

=

∫
Fn2

(∫
Fn2

f1 ◦ Ta(yg
−1)f2 ◦ Ta(gh

−1)| detTag|−ndg

)
f3 ◦ Tb(h)| detTbh|−ndh

=

∫
Fn2

(∫
Fn2

f1 ◦ T (yg−1)f2 ◦ T (gh−1)| det g|−ndg

)
f3 ◦ T (h)| deth|−ndh

=

∫
Fn2

(∫
Fn2

f1 ◦ T (yh−1(gh−1)−1)f2 ◦ T (gh−1)| detTg|−nd(gh−1)

)
f3 ◦ T (h)| deth|−ndh

=

∫
Fn2

(
(f1 ∗ f2) ◦ T (yh−1)

)
f3 ◦ T (h)| deth|−ndh

= (f1 ∗ f2) ∗ f3(y).

□

3. C((X))-representations of GLn(F )

3.1. Measurable representations of GLn(F ).

Definition 3.1. A measurable C((X))-representation of G(F ) is a pair (V, π),
where V is a C((x))-vector space, and

π : GLn(F ) → AutVectC((X))
(V ).

such that Stabv is a measurable subgroup of G.

Given a representation π : G → GL(V ), for f ∈ H, one obtains a linear map

π(f) : V → V

v 7→
∫
GLn(F )

f(g)π(g) · vdg.

We obtain an action

H× V → V.

Lemma 3.2. The action H× V → V is an algebra action.



12 XUECAI MA

Proof. we have

π(f1 ∗ f2) · v =

∫
GLn(F )

(∫
GLn(F )

f1(gh
−1)f2(h)dh

)
π(g) · vdg

=

∫
GLn(F )

(∫
GLn(F )

f1(g
′)f2(h)dh

)
π(g′h) · vd(g′)

=

∫
GLn(F )

(∫
GLn(F )

f1(g
′)π(g′)f1(h)π(h) · vdh

)
dg′h

=

∫
GLn(F )

f1(g
′)π(g′)

(∫
GLn(F )

f2(h)π(h) · vdh

)
dg′h

=

∫
GLn(F )

f1(gh
−1)π(gh−1)

(∫
GLn(F )

f2(h)π(h) · vdh

)
dg

= π(f1)(π(f2) · v),

where the last equality comes from the translation property of the integral. □

3.2. Representation on function spaces. Suppose that we have a LH(GLn(F ))-
module V , how do we get a measurable representation? We first consider the action
of G on LH(GLn(F )) by

(h · f)(x) = f(h−1x).

Proposition 3.3. LH(GLn(F )) is a measurable representation of GLn(F ).

Proof. By the translation invariant properties of the two-dimensional integral, we
have f(h−1x) belongs to LH(GLn(F )). To prove it is a measurable representa-
tion, we need to prove that Stabf is a measurable subgroup of GLn(F ). Since
LH(GLn(F )) is generated by gA,Γ ◦ rσ, where g is a Bruhat-Schwartz function on
E. We may suppose that g = charEK for a compact subset of E, and f = gA,Γ ◦ rσ.
We then have

gA,Γ ◦ rσ(x) = charV , V =
{
x ∈ GLn(F )|rσx ∈ (A+ t

γi,j

2 p−1K)1≤i,j≤n

}
,

gA,Γ ◦ rσ(h−1x) = charU , U =
{
x ∈ GLn(F )|rσh−1x ∈ (A+ t

γi,j

2 p−1K)1≤i,j≤n

}
.

By the assumption of f ,

Stabf = {h ∈ GLn(f)|V = U} .

That is
Stabf = Stabr−1

σ A ∩ Stabp−1K .

Since K is a compact subset of E, for every y ∈ K, we have a compact open
neighbourhood Kyy ⊂ K. Then

{Kyy|y ∈ K}

is an open cover of K, it has finite sub-cover {K1y1, · · · ,Ksys}. Let

H = ∩1≤i≤sKi.

Then K is left H invariant. We claim that p−1K is left p−1H invariant.



C(((X)) REPRESENTATIONS OF GLn OVER 2-DIMENSIONAL LOCAL FIELDS 13

For w ∈ p−1H, and z ∈ p−1K, we have

p(wz) = p(w)p(z) ⊂ K,

so wz ⊂ p−1K. On the other hand, we have Stabrσ−1A = e. Thus Stabf = {e} if
A /∈ (t

γi,j

2 p−1K)1≤i,j≤n, and Stabf = p−1H if A ∈ (t
γi,j

2 p−1K)1≤i,j≤n. We have e
is a measure 0 subgroup, and∫

MN (F )

charp−1H | detx|−ndx =

∫
Mn(F )

(charH)0,0(x)| detx|−ndx.

By [Mor08, Poposition 4.7], p−1H is a measurable subgroup. □

Lemma 3.4. Every element f ∈ LH(GLn(F )) is right LH(GLn(F )//M) for some
measurable subgroup M of GLn(F ).

Proof. We may suppose that f = g0,Γ◦rσ, otherwise we can take M = In. Since g is
a Bruhat-Schwartz function on E, we may suppose that g = charEK ∈ C∞

C (GLn(E))
for a compact open subset K ⊂ E. Like the previous lemma, for every y ⊂ K, we
can choose a compact open subgroup Ky ⊂ E, such that yKy ⊂ K. We have

{yKy|y ∈ K}
is an open cover of K, it has finite sub-cover {y1K1, · · · , ysKs}. Let

Hr = ∩1≤i≤sKi.

Then K is right Hr-invariant. Similarly, we can find Hl such that K is left Hl

invariant. Let
H = Hr ∩Hl,

we see that g is bi-K-invariant. Let M = p−1(H), we claim that f = g0,Γ ◦ rσ is
bi-M -invariant. Suppose that w1, w2 ∈ p−1(H), z ∈ p−1(K), we then have

p(w1zw2) = p(w1)p(z)p(w2) ⊂ K,

thus w1zw2 ⊂ p−1K. We have

g0,Γ ◦ rσ(x) = charV , V =
{
x ∈ GLn(F )|rσx ∈ (t

γi,j

2 p−1K)1≤i,j≤n

}
,

thus V is bi-M-invariant. We get f ∈ LH(GLn(F )//M). □

Remark 3.5. Since LH(GLn(F )) is generated by ga,γ ◦ rσ and all g are compactly
generated, since are locally constant functions. We then get for f ∈ LH(GLn(F )//M),

f =
∑

f(gi)IdMgiM .

We notice that usually this sum has infinite items.

4. Two-dimensional adelic automorphic forms

4.1. Two Dimensional Adeles. In this subsection, we give a very short introduc-
tion to two-dimensional adeles, more details can be found in [Fes03] and [Fes10].
Let B = SpecOK for a number filed K and let ϕ : X → B be a B-scheme satisfying
the following conditions:

(1) X is integral, regular and dimension 2.
(2) ϕ is proper and flat.
(3) The generic fibre XK is a geometrically integral, smooth, projective curve

over K.
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Fix a closed point x ∈ X, and a curve y ⊂ X, such that x ∈ y ⊂ X. Let
py,x = ker(OX,x → Oy,x) and ϕ : SpecÔX,x → SpecOX,x. For any q ∈ SpecÔX,x,
such that q∩OX,x = py,x, we call this q a local branches of y at x, denote all this q
as y(x). It can be proved that Kx,q := Frac((̂Ox)q) is a two-dimensional local field.

We make the following notations:

Kx,y :=
∏

q∈y(x)

Kx,q, Ox,y :=
∏

q∈y(x)

Ox,q

Ex,y :=
∏

q∈y(x)

Ex,q, where Ex,q is the residue field of Kx,q.

kx,y :=
∏

q∈y(x)

kx,q, where kx,q is the residue field of Ex,q.

For a nonsingular curve y on S and integer r, we define an adelic space

Ar
y =

∑
i≥r

ait
i
y| where ai are lifts of ai ∈ Ak(y)to ai ∈ Ox,y

x∈y

 .

Definition 4.1. For a curve y ⊂ S, we have the following definitions, see [Fes08]
for details.

(1) Ay := ∪r∈ZAr
y and OAy := A0

y.
(2) Ay := A0

y, and OAy := Ay ∩
∏

Ox,y.
(3) A :=

∏′
y⊂S Ay, the restrict product of Ay with respect to OAy.

(4) A :=
∏′

y⊂S Ay, the restrict product of Ay with respect to OAy.
(5) B := AS ∩

∏
Ky, C := A ∩

∏
Kx.

(6) B := AS ∩
∏

Oy.

There is a commutative diagram

A× ⊗A×/VA×

�� &&
T // A× × A×/VA× // J/V J

4.2. Automorphic forms on two-dimensional adeles. Let G = GLn and let
TG = G(A)×G(A)/V (G(A)×G(A)). Let KG be the image of the map

G(B)×G(K) → G(A)×G(A)/G(A) → TG.

It was suggested by Fesenko that the two-dimensional analogue of G(OAk)\G(Ak)/G(k)
is

TG/KG.

In following content, we assume K is positive characteristic, then V (A) = OA. The
two-dimensional adelic space can be viewed as

G(B)×G(K) \G(A)×G(A)/G(OA)×G(OA).

We let LH(GLn(A)×GLn(A)) denote the functions on GLn(A)×GLn(A) gener-
ated by ⊗x∈y⊂S(f

1
x,y, f

2
x,y) where f i

x,y = ⊗z∈y(x)f
ix, z ∈

∏
z∈y(x) LH(GLn(Kx,z)).
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Then for any f ∈ LH(GLn(A)×GLn(A)), the integral of f on GLn(A)×GLn(A)
is defined to be∫

GLn(A)×GLn(A)
fdµ =

∏
z∈y(x),x∈y⊂S

∫
GLn(Kx,z)×GLn(Kx,z)

f1
x,z ⊗ f2

x,z.

Having the integration on two-dimensional adelic space, we can have the concept
of measurable subsets, measurable representations and so on. We have the following
definitions.

Definition 4.2. A function f : G(A)×G(A) → C((X)) is called an automorphic
function if it satisfies the following conditions:

(1) f ∈ LH(GLn(A)×GLn(A));
(2) f(γg) = f(g), ∀γ ∈ G(B)×G(K) and ∀g ∈ G(A)×G(A).
(3) For any v ∈ G(A) × G(A), {f(gv)|g ∈ G(A) × G(A)} is a measurable

representation of G(A(F ))×G(A(F )).

Definition 4.3. Let H be the complex vector space of all smooth functions ϕ :
G(A)×G(A) → C((X)). We define the convolution product on H by

Φ1 ∗ Φ2 : g 7→
∫
G(A)×G(A)

Φ1(gh
−1)Φ2(h)dh

for Φ1,Φ2 ∈ H. The complex vector space H together with the convolution product
is called the Hecke algebra for G(A×G(A)).

The Hecke algebra H acts on a continuous function f : G(A)×G(A) → C((X))
by

Φ(f) : g 7→
∫
G(A)×G(A)

ϕ(h)f(gh)dh.
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