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Abstract. Given an E∞-ring spectrum R, with motivation from chromatic
homotopy theory, we define relative Cartier divisors for a spectral Deligne–

Mumford stack and prove that, as a functor from connective R-algebras to

topological spaces, it is relatively representable. We then solve various moduli
problems of level structures on spectral abelian varieties, overcoming difficulty

at primes dividing the level. In particular, we obtain higher-homotopical re-

finement for finite levels of the Lubin–Tate tower as E∞-rings, which generalize
Morava, Hopkins, Miller, Goerss, and Lurie’s spectral realization at the ground

level. Moreover, passing to the infinite level and then descending along the

isomorphic Drinfeld tower, we obtain a Jacquet–Langlands dual to the Morava
E-theory spectrum, along with homotopy fixed point spectral sequences dual

to those studied by Devinatz and Hopkins. These serve as potential tools

for computing higher-periodic homotopy types from pro-étale cohomology of
p-adic general linear groups.
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1. Introduction

The stable homotopy category is a central topic in algebraic topology. Structured
ring spectra are the most common examples studied, such as H∞ spectra and E∞
spectra. In [Lur09a] and [Lur18b], Lurie uses spectral algebraic methods gives a
proof of the Goerss-Hopkins-Miller theorem for topological modular forms. Except
for the application of elliptic cohomology, Lurie also proved the E∞ structures of
Morava E-theories [Lur18b], which use the spectral version of deformation theory
of certain p-divisible groups. The earliest proof of E∞ structures of Morava E-
theories is due to Goerss, Hopkins, and Miller [GH04]. They turned the problem
into a moduli problem and developed an obstruction theory. One can finish the
proof by computing the André–Quillen groups. Comparing with their method,
Lurie’s proof is more conceptual. There are more and more applications of spectral
algebraic geometry in algebraic topology. Such as topological automorphic forms
[BL10], Morava E-theories over any Fp-algebra [Lur18b], not only just for a perfect
field k. The construction of equivariant topological modular forms [GM23], elliptic
Hochschild homology [ST23], and more.

On the other hand, moduli problems concerning deformations of formal groups
with level structures are also representable, and moduli spaces of different levels
form a Lubin–Tate tower [RZ96, FGL08, SW13]. We know that the universal ob-
jects of deformations of formal groups have higher algebraic analogs which are the
Morava E-theories. A natural question is what are higher categorical analogues of
moduli problems of deformations with level structures? And can we find higher
categorical analogs of Lubin–Tate towers? Although the E∞-structure of topologi-
cal modular forms with level structures can be obtained from [HL16], we still hope
that there exists a derived stack of spectral elliptic curves with level structures
that provide us with a more moduli interpretation. Except this, in the compu-
tation of unstable homotopy groups of spheres, after applying the EHP spectral
sequences and the Bousfield-Kuhn functor, we observe that some terms on the E2-
page also arise from the universal deformation of isogenies of formal groups. They
are computed by the Morava E-theories on the classifying spaces of symmetric
groups [Str97, Str98]. They can be viewed as sheaves on the Lubin–Tate tower.
We hope to provide a more conceptual perspective on this fact within the higher
categorical Lubin–Tate tower.

In this paper, we give an attempt to address this problem by studying specific
moduli problems in spectral algebraic geometry. The main ingredient of our work is
the derived version of Artin’s representability theorem established in [Lur04, TV08].
We will use the spectral algebraic geometry version [Lur18c] in this paper. We
study relative Cartier divisors in the context of spectral algebraic geometry. By
imposing certain conditions, we define derived level structures of certain geometric
objects in spectral algebraic geometry. Using this Artin representability theorem,
we prove some representable results of moduli problems that arise from our derived
level structures. We give some examples of applications involving derived level
structures. We consider the moduli problem of spectral deformations with derived
level structures of p-divisible groups. We prove that these moduli problems are
representable by certain formal affine spectral Deligne–Mumford stacks and the
corresponding spectra can provide us many interesting general cohomology theories.

We note here that the Goerss–Hopkins–Miller–Lurie sheaf does not directly apply
to the moduli problems here due to the failure of étaleness (cf. [Dev23]). This is fixed
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by relative Cartier divisors analogous to Drinfeld’s original approach to arithmetic
moduli of (classical) elliptic curves [KM85, Introduction].

Outline. We work on spectral algebraic geometry in this paper. In Section 2,
we define derived isogenies and prove that the kernel of a derived isogeny in some
cases has the same phenomenon as in the classical case. This provides evidence
that our derived versions of level structures must induce classical level structures.
For representability reasons, we use moduli associated with sheaves to detect higher
homotopy of derived versions of level structures. We define relative Cartier divisors
in the context of spectral algebraic geometry. For a spectral Deligne–Mumford
stack X over a spectral Deligne–Mumford stack S, a relative Cartier divisor is a
morphism D → S of spectral Deligne–Mumford stacks such that D → X is a closed
immersion, the ideal sheaf of D is a line bundle over X, and the morphism D → S is
flat, proper and locally almost of finite presentation. We use Lurie’s representability
theorem to prove that the relative Cartier divisor is representable in certain cases.
The main part of our proof involves computing of cotangent complex. Here is our
first main result.

Theorem A (Theorem 2.17). Suppose that E is a spectral algebraic space over
a connective E∞-ring R, such that E → R is flat, proper, locally almost of finite
presentation, geometrically reduced, and geometrically connected. Then the functor

CDivE/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic space which is locally almost of finite pre-
sentation over R.

In Section 3, we define derived level structures of spectral elliptic curves. Roughly
speaking, for a finite abstract abelian group A, usually equals Z/NZ, Z/NZ×Z/NZ,
a derived level-A structure of a spectral elliptic curve E over an E∞-ring R is just
a relative Cartier divisor D → E satisfying its restriction to the heart comes from
an ordinary level-A structure. We let Level(A, E/R) denote the space of derived
level-A structures of a spectral elliptic curve E/R. We prove that moduli problems
associated with derived level structures are representable.

Theorem B (Theorem 3.5). Suppose that E is a spectral elliptic curve over a
connective E∞-ring R. Then the functor

LevelE/R : CAlgcnR → S
R′ 7→ Level(A, ER′/R′)

is representable by an affine spectral Deligne–Mumford stack which is locally almost
of finite presentation over the E∞-ring R.

In classical algebraic geometry, except one-dimensional group curves, we also
care level structures of p-divisible groups, which come from the full sections of
commutative finite flat group schemes. In Section 3.2, we consider derived level
structures of spectral p-divisible groups. Let Level(k,GR/R) denote the space of
derived level-(Z/pkZ)h structures of a height h spectral p-divisible group G/R.

Theorem C (Theorem 3.16). Suppose G is a spectral p-divisible group of height
h over a connective E∞-ring R. Then the functor

LevelkG/R : CAlgcnR → S; R′ → Level(k,GR′/R′)
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is representable by an affine spectral Deligne–Mumford stack S(k) = SpétPk
G/R.

In Section 4, we give some applications of derived level structures. We first prove
that the moduli problem of spectral elliptic curves with derived level-A structures
is representable by a spectral Deligne–Mumford stack.

Theorem D (Theorem 4.7). Let Ell(A)(R) denote the space of spectral elliptic
curves with derived level-A structures over the E∞-ring R. Then the functor

Mell(A) : CAlgcn → S
R 7−→Mell(A)(R) = Ell(A)(R)

is representable by a spectral Deligne–Mumford stack and this stack is locally almost
of finite presentation over the sphere spectrum S.

In [Lur18b], Lurie considers the spectral deformations of classical p-divisible
groups. As we have the concept of derived level structures, it is natural to con-
sider the moduli of spectral deformations with derived level structures of certain
p-divisible groups. Suppose G0 is a p-divisible group of height h over a perfect
Fp-algebra R0. We consider the following functor

Mor
k : CAlgadcpl → S

R→ DefLevelor(G0, R, k)

where DefLevelor(G0, R, k) is the∞-category spanned by those quadruples (G, ρ, e, η)

(1) G is a spectral p-divisible group over R.
(2) ρ is a equivalence class of G0-taggings of R.
(3) e is an orientation of the identity component of G.
(4) η : D → G is a derived (Z/pkZ)h-level structure of G/R.

Our next main result is the following.

Theorem E (Theorem 4.9). The functorMor
k is co-representable by an E∞-ring

JLk, where JLk is a finite Ror
G0

-algebra, Ror
G0

is the orientation deformation ring of
G0 defined in [Lur18b].

We will give another example of spectra constructed by considering moduli of
spectral deformations with p-power order subgroups level structures, which can be
viewed as topological realizations of universal objects of Strickland’s deformations
of Frobenius.

Finally, in Section 5, for every classical p-divisible group, we construct an E∞-
spectrum JL called the Jacquet–Langlands spectrum. By taking homotopy fixed
points, we get a Jacquet–Langlands dual of Morava E-theories. We have a diagram
in algebraic geometry:

X
GLn(Zp)

}}

Gn

  
LTK H,

where LTK is the moduli space of deformation of formal groups, X is the moduli
space of defomration with level structures of formal groups, and H is the Drinfled
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upper half plane. It can be lift to the following diagram in the level of E∞-spectra.

JL
GLn(Zp)

}}

Gn

""
En

LEn

Question 1.1. Compute higher homotopy groups of the finite-level and infinite-
level Jacquet–Langlands spectra. These should encode more refined arithmetic-
geometric information. Cf. higher algebraic K-theory, higher stable motivic stems,
classification of knots not just up to isotopy, and the Habiro ring of a number field
(elementless vs. categorification of elements).

Notation and terminology.

• Let CAlg denote the ∞-category of E∞-rings and CAlgcn denote the ∞-
category of connective E∞-rings.
• Let S denote the ∞-category of spaces (∞-groupoids).
• Given a spectral Deligne–Mumford stack X = (X ,OX ), let τ≤nX denote
its n-truncation (X , τ≤nOX ) and X♡ denote its underlying ordinary stack
(X♡, τ≤0OX ).
• By a spectral Deligne–Mumford stack X over an E∞-ring R, we mean a
morphism of spectral Deligne–Mumford stacks X → SpétR. Given an R-
algebra S, we sometimes write X×RS for the fiber product X×SpétRSpétS.
• Let Mell denote the spectral Deligne–Mumford stack of spectral elliptic
curves, as defined in [Lur18a], and Mcl

ell denote the (classical) Deligne–
Mumford stack of (classical) elliptic curves.

2. Relative Cartier divisors of spectral Deligne–Mumford stacks

A main innovation of this paper concerns derived level structures. We begin
with a derived version of isogenies and prove that, in certain cases, the kernel of
a derived isogeny behaves similarly as in the classical setting. This gives evidence
that our derived version of level structures must induce classical level structures.
In Section 2.2, we define relative Cartier divisors in the setting of spectral algebraic
geometry. We then use Lurie’s representability theorem to prove that certain func-
tors associated with relative Cartier divisors are representable by spectral Deligne–
Mumford stacks. This paves the way for Section 3, where we establish specifically
the representability of derived level structures for spectral elliptic curves and spec-
tral p-divisible groups.

2.1. Isogenies of spectral elliptic curves. To define derived level structures,
the first question we must address is what higher-categorical analogues of finite
abelian groups are. Let us recall from [Lur17, Section 7.2.4] and [Lur18c, Section
2.7] some finiteness conditions in the context of E∞-rings.

Let A be an E∞-ring and M be an A-module. We say that M is

• perfect, if it is a compact object of the∞-category LModA of leftA-modules;
• almost perfect, if there exists an integer k such that M ∈ (LModA)≥k and
M is an almost compact object of (LModA)≥k, that is, τ≤nM is a compact
object of τ≤n

(
(LModA)≥k

)
for all n ≥ 0;
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• perfect to order n, if given any filtered diagram {Nα} in (LModA)≤0, the

canonical map lim−→
α

ExtiA(M,Nα) → ExtiA(M, lim−→
α

Nα) is injective for i = n

and bijective for i < n;
• finitely n-presented, if M is n-truncated and perfect to order n+ 1; and
• finitely generated, if it is perfect to order 0.

Next we recall finiteness conditions on algebras. We say that a morphism ϕ :
A→ B of connective E∞-rings is

• of finite presentation, if B belongs to the smallest full subcategory of CAlgA
which contains CAlgfreeA and is stable under finite colimits;
• locally of finite presentation, if B is a compact object of CAlgA;
• almost of finite presentation, if B is an almost compact object of CAlgA;
• of finite generation to order n, if the following condition holds;

Let {Cα} be a filtered diagram of connective E∞-rings over A having col-
imit C. Assume that each Cα is n-truncated and that each of the transition
maps πnCα → πnCβ is a monomorphism. Then the canonical map

lim−→
α

MapCAlgA
(B,Cα)→ MapCAlgA

(B,C)

is a homotopy equivalence.
• of finite type, if it is of finite generation to order 0; and
• finite, if B is finitely generated as an A-module.

Proposition 2.1 (cf. [Lur18c, Propositions 2.7.2.1 and 4.1.1.3]). Let ϕ : A→ B be
a morphism of connective E∞-rings. Then The following conditions are equivalent.

• The morphism ϕ is finite (resp. of finite type).
• The commutative ring π0B is finite (resp. of finite type) over π0A.

Definition 2.2 (cf. [Lur18c, Definition 4.2.0.1]). Let f : X→ Y be a morphism of
spectral Deligne–Mumford Stacks. We say that f is locally of finite type (resp. locally
of finite generation to order n, locally almost of finite presentation, locally of finite
presentation) if the following condition holds. Given any commutative diagram

SpétB //

��

X

f

��
SpétA // Y

where the horizontal morphisms are étale, the E∞-ring B is of finite type (resp. of
finite generation to order n, almost of finite presentation, locally of finite presenta-
tion) over A.

Definition 2.3 ([Lur18c, Definition 5.2.0.1]). Let f : (X ,OX )→ (Y,OY) be a mor-
phism of spectral Deligne–Mumford stacks. We say that f is finite if the following
conditions hold.

• The morphism f is affine.
• The pushforward f∗OX is perfect to order 0 as a OY -module.

Remark 2.4. By [Lur18c, Example 4.2.0.2], a morphism f : X → Y of spectral
Deligne–Mumford stack is locally of finite type if and only if the underlying map of
ordinary stacks is locally of finite type in the sense of classical algebraic geometry.
Moreover, by [Lur18c, Remark 5.2.0.2], a morphism of f : X → Y is finite if and
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only if the underlying map f♡ : X♡ → Y♡ is finite. In particular, if X and Y are
spectral algebraic spaces, then f is finite if and only if f♡ is finite in the classical
sense.

Recall that a morphism f : X→ Y of spectral Deligne–Mumford stacks is surjec-
tive if for every field k and any map Spét k → Y, the fiber product Spét k ×Y X is
nonempty [Lur18c, Definition 3.5.5.5].

Definition 2.5. Let R be a connective E∞-ring and f : X → Y be a morphism
of spectral abelian varieties over R. We call f an isogeny if it is finite, flat, and
surjective.

Lemma 2.6. Let f : X → Y be an isogeny of spectral abelian varieties. Then
f♡ : X♡ → Y♡ is an isogeny in the classical sense.

Proof. For ordinary abelian varieties, f♡ being an isogeny means that it is surjective
and its kernel is finite. This is equivalent to f♡ being finite, flat, and surjective
[Mil86, Proposition 7.1]. From Definition 2.5, it is clear that f♡ is finite and flat.
We need only show that f♡ is surjective.

By the definition of surjectivity above for morphisms of spectral Deligne–Mumford
stacks, we get a commutative diagram

Spét k′

��

// X

��
Spét k // Y

The upper horizontal morphism corresponds to a morphism Spét k′ → X♡ by the
inclusion–truncation adjunction [Lur18c, Proposition 1.4.6.3]. On underlying topo-
logical spaces, this then corresponds to a point |Spét k′| → |X♡|. It is clear that
this point in |X♡| is a preimage of |Spét k| in |Y♡|. Therefore f♡ is surjective. □

Lemma 2.7. Let f : X→ Y be an isogeny of spectral elliptic curves over a connec-
tive E∞-ring R. Then fib(f) exists and is a finite and flat nonconnective spectral
Deligne–Mumford stack over R.

Proof. By [Lur18c, Proposition 1.4.11.1], finite limits of nonconnective spectral
Deligne–Mumford stacks exist, so we can define fib(f). Let us consider the com-
mutative diagram

fib(f) //

f ′

��

X

f

��

��

∗ //

i

))

Y

""
SpétR

where the square is a pullback diagram. We find that fib(f) is over SpétR. By
[Lur18c, Remark 2.8.2.6], f ′ : fib(f) → ∗ is flat because it is a pullback of a flat
morphism. Clearly i : ∗ → SpétR is flat, so by [Lur18c, Example 2.8.3.12] (being a
flat morphism is a property local on the source with respect to the flat topology),
i ◦ f ′ : fib(f)→ SpétR is flat.
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Next we show that fib(f) is finite over R. Since ∗, X, and Y are all spectral
algebraic spaces, so is fib(f). Moreover, SpétR is a spectral algebraic space [Lur18c,
Example 1.6.8.2]. By Remark 2.4, we need only prove that the underlying morphism
is finite. Since the truncation functor is a right adjoint, it preserves limits. Thus
we get a pullback diagram

fib(f)♡ //

��

X♡

��
∗ // Y♡

So we are reduced to showing that given an isogeny f♡ : X♡ → Y♡ of ordinary
abelian varieties over a commutative ring R, its kernel is finite over R. This is true
in classical algebraic geometry [Mil86, Proposition 7.1]. □

Lemma 2.8. Given an integer N ≥ 1, let fN : E → E be an isogeny of spectral
elliptic curves over a connective E∞-ring R such that the underlying morphism is
the multiplication-by-N map [N ] : E♡ → E♡. Then fib(fN ) is finite flat of degree
N2 in the sense of [Lur18c, Definition 5.2.3.1]. Moreover, if N is invertible in π0R,
then fib(fN ) is an étale-locally constant sheaf.

Proof. By [KM85, Theorem 2.3.1], we know that [N ] : E♡ → E♡ is finite locally
free of rank N2 in the classical sense. When N is invertible in π0R, its kernel
is an étale-locally constant sheaf. Now, from Lemma 2.7, fib(fN ) is a spectral
algebraic space that is finite and flat, and its underlying space fib(fN )♡ = ker[N ]
is locally free of rank N2. We need to prove that fib(fN ) → SpétR is locally free
of rank N2 in spectral algebraic geometry. Observe that since fib(fN ) is finite
and flat, it is affine. We are thus reduced to proving the above for affines, i.e.,
fN |SpétS : SpétS → SpétR is locally free of rank N2 for any affine substack SpétS
of fib(fN ). This is equivalent to proving that R → S is locally free of rank N2 in
the sense of [Lur18c, Definition 2.9.2.1]. Therefore we need to prove the following:

(1) The ring S is locally free of finite rank over R (by [Lur17, Proposition
7.2.4.20], this is equivalent to saying that S is a flat and almost perfect
R-module).

(2) For every E∞-ring maps R→ k with k a field, the vector space π0(k⊗R S)
is an N2-dimensional k-vector space.

For (1), we know that π0S is a projective π0R-module and that S is a flat R-
module, so by [Lur17, Proposition 7.2.2.18], S is a projective R-module. By [Lur17,
Corollary 7.2.2.9], since π0S is a finitely generated π0R-module, S is a retract of a
finitely generated free R-module, and is therefore locally free of finite rank.

For (2), by [Lur17, Corollary 7.2.1.23], since R and S are connective, we have
π0(k ⊗R S) ≃ k ⊗π0R π0S, which is an N2-dimensional k-vector space, as π0S is a
rank-N2 free π0R-module from above.

We next show that if N is invertible in π0R, then fib(fN ) is a locally constant
sheaf. Since fib(fN ) is a spectral Deligne–Mumford stack, its associated functor of
points fib(fN ) : CAlgR → S is nilcomplete and locally almost of finite presentation.
By [KM85, Theorem 2.3.1], fib(fN )|CAlg♡

π0R
is a locally constant sheaf. The desired

result then follows from the lemma below. □

Lemma 2.9. Let R be a connective E∞-ring. Let F ∈ Shvét(CAlgcnR ) be nilcom-
plete and locally almost of finite presentation. Suppose that F |(CAlgcn

R )♡ is a locally
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constant presheaf. Then F is a (homotopy) locally constant sheaf (i.e., sheafifica-
tion of a homotopy-locally constant presheaf).

Proof. Let us choose an étale cover {U0
i } of π0R such that F |U0

i
is a constant sheaf

for each i. By [Lur17, Theorem 7.5.1.11], this corresponds to an étale cover {Ui}
of R such that π0Ui = U0

i . For each i and n, we consider the diagram

τ≤0R //

��

τ≤0Ui

��
τ≤nR // τ≤nUi

which is a pushout diagram, since Ui is an étale R-algebra. This is a colimit diagram
in τ≤nCAlgR. Since F is a sheaf locally almost of finite presentation, we then get
a pushout diagram

F (τ≤0R) //

��

F (τ≤0Ui)

��
F (τ≤nR) // F (τ≤nUi)

Without loss of generality, we may assume that each Ui is connective. Thus the
values F (τ≤0Ui) is independent of i. This implies that F (τ≤nUi) are all equivalent.
Since F is nilcomplete, F (Ui) ≃ lim−→n

F (τ≤nUi), and so all F (Ui) are equivalent.
□

2.2. Cartier divisors and an exercise of spectral Artin representability.
In this subsection, we define relative Cartier divisors in the context of spectral
algebraic geometry. We then use Lurie’s spectral Artin representability theorem
to prove that relative Cartier divisors are representable in certain cases. Let us
first recall this spectral analogue of Artin’s representability criterion in classical
algebraic geometry.

Theorem 2.10 ([Lur18c, Theorem 18.3.0.1]). Let X : CAlgcn → S be a functor.
Suppose that we have a natural transformation f : X → SpecR, where R is a
Noetherian E∞-ring with π0R a Grothendieck ring. Given n ≥ 0, X is representable
by a spectral Deligne–Mumford n-stack which is locally almost of finite presentation
over R if and only if the following conditions are satisfied:

(1) For every discrete commutative ring A, the space X(A) is n-truncated.
(2) The functor X is a sheaf for the étale topology.
(3) The functor X is nilcomplete, infinitesimally cohesive, and integrable.
(4) The functor X admits a connective cotangent complex LX .
(5) The natural transformation f is locally almost of finite presentation.

Given a locally spectrally ringed topos X = (X ,OX ), we can consider its functor
of points

hX :∞ToplocCAlg → S, Y 7→ Map∞Toploc
CAlg

(Y,X)

In particular, by [Lur18c, Remark 3.1.1.2], a closed immersion f : (Y,OY) →
(X ,OX ) of locally spectrally ringed topoi corresponds to a morphism OX → f∗OY
of sheaves over X of connective E∞-rings such that π0OX → π0f∗OY is an epimor-
phism. We denote this epimorphism by α. Given a closed immersion f : D→ X of
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spectral Deligne–Mumford stacks, we let I(D) denote ker(α), called the ideal sheaf
of D.

To prove relative representability for Cartier divisors below, we need the repre-
sentability of Picard functors. Given a map f : X → SpétR of spectral Deligne–
Mumford stacks, we can define a functor

PicX/R : CAlgcnR → S, R′ 7→Pic(SpétR′ ×SpétR X)

If f admits a section x : SpétR → X, then pullback along x gives a natural trans-
formation of functors PicX/R →PicR/R. We let

PicxX/R : CAlgcnR → S

denote the fiber of this map.

Theorem 2.11 ([Lur18c, Theorem 19.2.0.5]). Let f : X → SpétR be a map of
spectral algebraic spaces which is flat, proper, locally almost of finite presentation,
geometrically reduced, and geometrically connected over an E∞-ring R. Suppose
that x : SpétR→ X is a section of f . Then the functor PicxX/R is representable by
a spectral algebraic space which is locally of finite presentation over R.

In the classical setting, schemes representing relative Cartier divisors are open
subschemes of Hilbert schemes [Kol96, Theorem 1.13]. However, in the derived
setting, the Hilbert functor is representable by a spectral algebraic space [Lur04,
Theorem 8.3.3], and it is hard to establish an analogous relationship. We will
directly study relative Cartier divisors and their spectral moduli as follows.

Definition 2.12 (Relative Cartier divisor). Suppose that X is a spectral Deligne–
Mumford stack over a spectral Deligne–Mumford stack S. We let CDiv(X/S) denote
the ∞-category of closed immersions D → X, such that D is flat, proper, locally
almost of finite presentation over S and the associated ideal sheaf of D is locally
free of rank one over X.

Remark 2.13. It is easy to see that given any spectral Deligne–Mumford stack X
over S, CDiv(X/S) is a Kan complex, since all objects are closed immersions of X.
Let D→ D′ be a morphism. Then we have a diagram

D
f //

��

D′

��
X

By the definition of closed immersions, they are all equivalent to the same substack
of X, so f is an equivalence (cf. [Lur18c, Remark 3.1.1.2]).

Lemma 2.14. Let X/S be a spectral Deligne–Mumford stack as above, and T→ S
be a map of spectral Deligne–Mumford stacks. If we have a relative Cartier divisor
D→ X, then DT is a relative Cartier divisor of XT.

Proof. This is straightforward to check. We simply note that DT is a closed immer-
sion of XT [Lur18c, Corollary 3.1.2.3]. After base change, DT is flat, proper, and
locally almost of finite presentation over T. It remains to show that I(DT) is a line
bundle over XT. Indeed, we have a fiber sequence

I(D)→ OX → OD
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By the flatness of D, pullback along the base change f : T→ S gives another fiber
sequence

f∗
(
I(D)

)
→ OXT

→ ODT

So we have that I(DT) is just f
∗(I(D)), which is invertible. □

Suppose that X is a spectral Deligne–Mumford stack over an affine spectral
Deligne–Mumford stack S = SpétR. From Definition 2.12, we then have a functor

CDivX/R : CAlgcnR → S, R′ 7→ CDiv(XR′/R′)

Our main goal in this section is to prove that this functor is representable when
X/R is a spectral algebraic space satisfying certain conditions. To achieve this, we
need some preparations for computing the cotangent complex of a relative Cartier
divisor functor. The main issue has to do with square-zero extensions, for which
we need the following facts about pushouts of two closed immersions.

By [Lur18c, Theorem 16.2.0.1 and Proposition 16.2.3.1], given a pushout square
of spectral Deligne–Mumford stacks

X01
i //

j

��

X0

j′

��
X1

i′ // X

such that i and j are closed immersions, the induced square of ∞-categories

QCoh(X01) QCoh(X0)oo

QCoh(X1)

OO

QCoh(X)oo

OO

determines an embedding θ : QCoh(X) → QCoh(X0) ×QCoh(X01) QCoh(X1), which
restricts to an equivalence

QCoh(X)cn → QCoh(X0)
cn ×QCoh(X01)cn QCoh(X1)

cn

between connective objects. Moreover, let F ∈ QCoh(X) and set

F0 = j′∗ ∈ QCoh(X0), F1 = i′∗F ∈ QCoh(X1)

Then F is n-connective if and only if F0 and F1 are n-connective, and this state-
ment is also true for the conditions of almost connective, Tor-amplitude ≤ n, flat,
perfect to order n, almost perfect, perfect, and locally free of finite rank, respec-
tively.

Also, by [Lur18c, Theorem 16.3.0.1], we have a pullback square of ∞-categories

SpDM/X
//

��

SpDM/X0

��
SpDM/X1

// SpDM/X01

Let f : Y → X be a map of spectral Deligne–Mumford stacks. Let Y0 = X0 ×X Y,
Y1 = X1 ×X Y, and let f0 : Y0 → X0 and f1 : Y1 → X1 be the projection maps.
Then we have that f is locally almost of finite presentation if and only if both f0
and f1 are locally almost of finite presentation. The statement remains true for
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the following individual conditions: locally of finite generation to order n, locally
of finite presentation, étale, equivalence, open immersion, closed immersion, flat,
affine, separated, and proper [Lur18c, Proposition 16.3.2.1].

Now, let X = (X ,OX ) be a spectral Deligne–Mumford stack, E ∈ QCoh(X)cn

be a connective quasi-coherent sheaf, and η ∈ Der(OX ,ΣE ) be a derivation, i.e., a
morphism η : OX → OX ⊕ ΣE . We let Oη

X denote the square-zero extension of OX
by E determined by η, so that we have a pullback diagram

Oη
X

//

��

OX

η

��
OX

0 // OX ⊕ ΣE

By [Lur18c, Proposition 17.1.3.4], (X ,Oη
X ) is a spectral Deligne–Mumford stack,

which we will denote by Xη. In the case of η = 0, we denote it by XE = (X ,OX⊕E ).
We then have a pushout square of spectral Deligne–Mumford stacks

XE Xoo

X

OO

XΣE
g

oo

f

OO

such that f and g are closed immersions. In turn, by [Lur18c, Theorem 16.2.0.1],
there is a pullback diagram

QCoh(XE )acn

��

// QCoh(X)acn

��
QCoh(X)acn // QCoh(XΣE )acn

of categories spanned by almost connective quasi-coherent sheaves. Passing to
homotopy fibers over some F ∈ QCoh(X)acn, we obtain an equivalence

QCoh(XE )acn ×QCoh(X) {F} ≃ MapQCoh(X)

(
F ,Σ(E ⊗F )

)
as in [Lur18c, Proposition 19.2.2.2]. Similarly, by passing to the homotopy fibers
over some Z ∈ SpDM/X with f : Z → X, we obtain the classification of first-order
deformations of X:

SpDM/XE ×SpDM/X
{Z} ≃ MapQCoh(Z)(LZ/X,Σf

∗E )

[Lur18c, Proposition 19.4.3.1].

Lemma 2.15. Let f : X → SpétR be a morphism of spectral Deligne–Mumford
stacks, and M a connective R-module. Consider the∞-category of Deligne–Mumford
stacks X′ equipped with a morphism f ′ : X′ → Spét (R⊕M) that fits into the pullback
diagram

X //

f

��

X′

f ′

��
SpétR // Spét (R⊕M)



SPECTRAL MODULI PROBLEMS FOR LEVEL STRUCTURES 13

Then this ∞-category is a Kan complex, and it is canonically homotopy equivalent
to the mapping space MapQCoh(X)(LX/SpétR,Σf

∗M). Moreover, if f is flat, proper,

and locally almost of finite presentation, then so is f ′.

Proof. We have a pullback square of E∞-rings

R⊕M

��

// R

(Id,0)

��
R // R⊕ ΣM

which corresponds to a pushout square of spectral Deligne–Mumford stacks

SpétR⊕M SpétRoo

SpétR

OO

Spét (R⊕ ΣM)

OO

oo

such that the morphisms Spét (R ⊕ ΣM) → SpétR are closed immersions. This
exhibits Spét (R ⊕ M) as an “infinitesimal thickening” of SpétR determined by

R
(Id,0)−−−→ R⊕ ΣM .
The first part of this lemma follows from the formula for first-order deforma-

tions of [Lur18c, Proposition 19.4.3.1]. The second part follows from properties of
pushout of two closed immersions [Lur18c, Corollary 16.4.2.1]. □

Lemma 2.16. Suppose that we are given a pushout diagram of spectral Deligne–
Mumford stacks

X01
i //

j

��

X0

��
X1

// X

where i and j are closed immersions. Let f : Y → X be a map of spectral Deligne–
Mumford stacks. Let Y0 = X0 ×X Y, Y1 = X1 ×X Y, and let f0 : Y0 → X0 and
f1 : Y1 → X1 be the projection maps. If f0 and f1 are both closed immersions and
determine line bundles over Y0 and Y1 respectively, then f is a closed immersion
and determines a line bundle over Y.

Proof. The statement concerning closed immersions follows from [Lur18c, Proposi-
tion 16.3.2.1]. For the line-bundle part, we notice that by [Lur18c, Theorem 16.2.0.1
and Proposition 16.2.3.1], f determines a sheaf locally free of finite rank. To show
that this sheaf is a line bundle, we proceed locally. By [Lur18c, Theorem 16.2.0.2],
given a pullback diagram of connective E∞-rings

A //

��

A0

��
A1

// A01

such that π0A0 → π0A01 ← π0A1 are surjective, there is an equivalence F :
ModcnA → ModcnA0

×Modcn
A01

ModcnA1
. Moreover, this is a symmetric monoidal equiv-

alence. Indeed, since F (M) = (A0 ⊗A M,A1 ⊗A M,A01 ⊗A0
A0 ⊗A M ≃ A01 ⊗A1
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A1⊗AM), we have F (M⊗AN) ≃ F (M)⊗F (N). By [Lur18c, Proposition 2.9.4.2],
line bundles over A1, A01, and A0 determine invertible objects of ModcnA1

, ModcnA01
,

and ModcnA1
respectively, which in turn determine an invertible object of ModcnA ,

hence a line bundle over A. □

Here is the main result of this section and the technical heart of the paper.

Theorem 2.17. Let E/R be a spectral algebraic space that is flat, proper, locally
almost of finite presentation, geometrically reduced, and geometrically connected.
Then the functor

CDivE/R : CAlgcnR → S
R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic space which is locally almost of finite presen-
tation over R.

Proof. We apply Lurie’s spectral Artin representability theorem and verify the 5
criteria from Theorem 2.10 one by one, in the case of n = 0, as follows:

(1) Lemma 2.18;
(2) Lemma 2.19;
(3) Lemmas 2.20, 2.21, 2.22;
(4) Lemma 2.24; and
(5) Lemma 2.23.

These statements and their proofs occupy the rest of this section. □

Lemma 2.18. For every discrete commutative R0, the space CDivE/R(R0) is 0-
truncated.

Proof. Recall that CDivE/R(R0) consists of closed immersions D → E ×R R0 such
that D is flat and proper over R0. Therefore, if R0 is discrete, so are the objects D,
and so CDivE/R(R0) is 0-truncated. □

Lemma 2.19. The functor CDivE/R is a sheaf for the étale topology.

Proof. Let {R′ → Ui}i∈I be an étale cover of SpétR′, and U• be the associated
Čech-simplicial object. We need to prove that the map

CDivE/R(R
′)→ lim←−

∆

CDivE/R(U•)

is an equivalence. Unwinding the definitions, we need only prove the following
general result: Given a spectral Deligne–Mumford stack X/S and an étale cover
Ti → S, we have a homotopy equivalence

CDiv(X/S)→ lim←−
∆

CDiv(X×S T•)

This follows from the fact that our conditions on relative Cartier divisors from
Definition 2.12 are local with respect to the étale topology. □

Lemma 2.20. The functor CDivE/R is nilcomplete.

Proof. By [Lur18c, Definition 17.3.2.1], we need to show that the canonical map

CDivE/R(R
′)→ lim←−

n

CDivE/R(τ≤nR
′)
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is a homotopy equivalence for every E∞-ring R′. This can be deduced from the fol-
lowing: Given a flat, proper, locally almost of finite presentation spectral algebraic
space X over a connective E∞-ring S, we have an equivalence

CDiv(X/S)→ lim←−
n

CDiv(X×S τ≤nS)

Let us now prove this equivalence. Given a relative Cartier divisor D → X, we
have the following commutative diagram

D×S τ≤nS

��

))

// D

��
X×S τ≤nS

��

// X

��
Spét τ≤nS // SpétS

where we get an induced map D ×S τ≤nS → X ×S τ≤nS. It is not hard to prove
that this map is a closed immersion [Lur18c, Corollary 3.1.2.3]. Moreover, the map
D ×S τ≤nS → Spét τ≤nS is flat, proper, and locally almost of finite presentation,
since D×S τ≤nS is the base change of D along Spét τ≤nS → SpétS. The associated
ideal sheaf of D×S τ≤nS remains a line bundle over X×S τ≤nS. Therefore D×S τ≤nS
is a relative Cartier divisor of X×S τ≤nS. Thus we define a functor

θ : CDiv(X/S)→ lim←−
n

CDiv(X×S τ≤nS)

D 7→ {D×S τ≤nS}n
This functor is fully faithful, since we have from [Lur18c, Proposition 19.4.1.2]

an equivalence SpDM/S → lim←−n
SpDM/τ≤nS

defined by X 7→ X ×S τ≤nS. For θ to

be an equivalence, we need only show that it is essentially surjective.
Suppose {Dn → X ×S τ≤nS}n is an object in lim←−n

CDiv(X ×S τ≤nS). It is a

morphism in lim←−n
SpDM/τ≤nS

. By [Lur18c, Proposition 19.4.1.2], there is a mor-

phism D → X in SpDM/S such that D ×S τ≤nS → X ×S τ≤nS are equivalent to
Dn → X×S τ≤nS.

Next, we need to show that D → X from above is a relative Cartier divisor.
The conditions that D→ X is flat, proper, and locally almost of finite presentation
follow immediately from [Lur18c, Proposition 19.4.2.1]. It remains to prove that
D→ X is a closed immersion and determines a line bundle over X.

Without loss of generality, we may assume that X = SpétB is affine, so that
we have closed immersions Dn → (SpétB) ×S τ≤nS ≃ Spét (B ⊗S τ≤nS), the last
equivalence from [Lur18c, Proposition 1.4.11.1(3)]. By [Lur18c, Theorem 3.1.2.1],
each D×S τ≤nS is equivalent to SpétB′n for some B′n such that π0(B ⊗S τ≤nS)→
π0B

′
n is surjective. Since τ≤n+1S → B′n+1 is flat, we have

SpétB′n = (SpétB′n+1)×τ≤n+1S τ≤nS = Spét (B′n+1 ⊗τ≤n+1S τ≤nS)

≃ Spét τ≤nB
′
n+1

Thus we obtain a spectrum B′ such that Spét τ≤nB
′ ≃ SpétB′n = D ×S τ≤nS.

Consequently, D = SpétB′ and π0B → π0B
′ is surjective, and so D = SpétB′ →

SpétB = X is a closed immersion.
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Finally, to prove that the associated ideal sheaf of D is a line bundle, we notice
the pullback diagrams

In //

��

B ⊗S τ≤nS

��
∗ // B′ ⊗S τ≤nS

where each In is an invertible module over B ⊗S τ≤nS = τ≤nB. Passing to inverse
limits, we obtain a pullback diagram

lim←− In //

��

B

��
∗ // B′

Consequently, we have I(D) ≃ lim←− In. Now, by nilcompleteness of the Picard

functor PicX/S from [Lur18c, Proposition 19.2.4.7(1)], I(D) is an invertible B-
module. Therefore the associated ideal sheaf of D is a line bundle over X. □

Lemma 2.21. The functor CDivE/R is infinitesimally cohesive.

Proof. This follows from Proposition 2.16 and [Lur18c, Proposition 16.3.2.1]. □

Lemma 2.22. The functor CDivE/R is integrable.

Proof. Given a local Noetherian E∞-ring R′ which is complete with respect to its
maximal ideal m ⊂ π0R

′, we need to prove that the inclusion functor Spf R′ ↪→
SpecR′ induces a homotopy equivalence

MapFun(CAlgcn,S)(SpecR
′,CDivE/R)→ MapFun(CAlgcn,S)(Spf R

′,CDivE/R)

This can be deduced from the following result: Given a flat, proper, and separated
spectral algebraic space X locally almost of finite presentation over a connective
local Noetherian E∞-ring S which is complete with respect to its maximal ideal,
we have an equivalence

CDiv(X/S) ≃ CDiv(X×SpétS Spf S)

Indeed, let Hilb(X/S) denote the full subcategory of SpDM/X consisting of those
D → X, such that each D → X is a closed immersion and is flat, proper, and
locally almost of finite presentation. Then by the formal GAGA theorem [Lur18c,
Corollary 8.5.3.4] and the base-change properties of being flat, proper, and locally
almost of finite presentation, we have Hilb(X/S) ≃ Hilb(X×SpétS Spf S).

To prove the above equivalence for relative Cartier divisors, we need to further
check that D → X associates a line bundle over X if and only if D ×SpétS Spf S
associates a line bundle over X×SpétS Spf S. Note that the morphism f : X×SpétS

Spf S → X is flat by [Lur18c, Corollary 7.3.6.9], and so we have I(D×SpétSSpf S) =
I(f∗D) ≃ f∗I(D) over the pullback square

D×SpétS Spf S //

��

D

��
X×SpétS Spf S

f // X
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By [Lur18c, proof of Proposition 19.2.4.7], we have an equivalence

QCoh(X/S)aperf,cn ≃ QCoh(X×SpétS Spf S)aperf,cn

We need only restrict to the subcategories spanned by invertible objects via [Lur18c,
Proposition 2.9.4.2] to complete the proof. □

Lemma 2.23. The functor CDivE/R is locally almost of finite presentation over
SpecR.

Proof. By [Lur18c, Definition 17.4.1.1(b)], we need to prove that

CDivE/R : CAlgcnR → S, R′ 7→ CDiv(ER′/R′)

commutes with filtered colimits when restricted to each τ≤nCAlgcnR . We notice that
CDiv(ER′/R′) is a full subcategory of SpDM/(ER′→SpétR′) and first consider instead
the functor

Var+ : CAlgcnR → Ĉat∞, R′ 7→ Var+/(ER′→SpétR′)

where Var+/(ER′→SpétR′) consists of diagrams

D //

""

ER′

��
SpétR′

such that D → SpétR′ is flat, proper, and locally almost of finite presentation.
Then by [Lur18c, Proposition 19.4.2.1], this functor commutes with filtered colimits
when restricted to τ≤nCAlgcnR . It remains to verify that when {Di → Ei,R′}i∈I are
closed immersions and determine line bundles over {Ei,R′}, lim−→i∈I Di → lim−→i∈I Ei,R′

are closed immersions and determine line bundles over lim−→i∈I Ei,R′ . As we recalled

earlier in this subsection, this follows from properties of closed immersions and the
property of Picard functors that they are locally almost of finite presentation. □

Lemma 2.24. The functor CDivE/R admits a cotangent complex L which is con-
nective and almost perfect.

Proof. Let S be a connective R-algebra, η ∈ CDivE/R(S), and M be a connective
S-module. We then have a pullback diagram

Fη(M) //

��

CDivE/R(S ⊕M)

��
{η} // CDivE/R(S)

From this we obtain a functor

Fη : ModS → S, M 7→ Fη(M)

We first need to prove that the above functor is corepresentable. Here, η is to a
morphism D → E ×R S, and E ×R (S ⊕M) is a square-zero extension of E ×R S.
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Thus by the classification of first-order deformations [Lur18c, Proposition 19.4.3.1],
the space of spectral algebraic spaces D′ which fit into the pullback diagram

D //

η

��

D′

��
E×R S //

p

��

E×R (S ⊕M)

��
SpétS // Spét (S ⊕M)

is equivalent to MapQCoh(D)

(
LD/(E×RS),Ση

∗(p∗M)
)
. Pushing forward along p ◦ η,

by [Lur18c, Proposition 6.4.5.3], we then have

MapQCoh(D)

(
LD/(E×RS),Ση

∗(p∗M)
)
≃ MapQCoh(SpétS)

(
Σ−1p+(η+LD/(E×RS)),M

)
By Lemma 2.16, any such D′ → E×R (S⊕M) is a closed immersion and determines
a line bundle over E×R (S ⊕M). Since the diagram

D //

��

D′

��
SpétS // Spét (S ⊕M)

is a pullback square, D′ is a square-zero extension of D. By [Lur18c, Proposition
16.3.2.1], D′ → Spét (S⊕M) is flat, proper, and locally almost of finite presentation.
Combining these facts, we find that

Fη(M) = MapQCoh(SpétS)

(
Σ−1p+(η+LD/(E×RS)),M

)
Consequently, the functor CDivE/R satisfies condition (a) from [Lur18c, Example
17.2.4.4]. Condition (b) therein follows from the compatibility of (p ◦ η)+, as a
left adjoint of the functor (p ◦ η)∗, with base change (cf. [Lur18c, Construction
6.4.5.1 and Proposition 6.4.5.3]). Therefore the functor CDivE/R admits a cotangent

complex LCDivE/R
satisfying η∗LCDivE/R

= Σ−1p+(η+LD/(E×RS)). Since the quasi-

coherent sheaf LD/(E×RS) is connective and almost perfect [Lur18c, Proposition

17.1.5.1(3)], the S-module Σ−1p+(η+LD/(E×RS)) is (−1)-connective.
Next, we show that LCDivE/R

is almost perfect. This follows from [Lur18c,

17.4.2.2] and Lemma 2.23.
Finally, we show that it is connective. As above, let S be a connective R-

algebra and η ∈ CDivE/R(S). We need to prove that Mη := η∗LCDivE/R
∈ ModS

is connective. We already knew that Mη is (−1)-connective and almost perfect.
In particular, the homotopy group π−1Mη is a finitely generated π0S-module. To
prove that it in fact vanishes, by Nakayama’s lemma, we note that this is equivalent
to proving that

π−1(κ⊗π0S Mη) ≃ Torπ0S
0 (κ, π−1Mη)

equals 0 for every residue field κ of π0S. Thus we may replace S by κ and assume
κ is an algebraically closed field.

Let A = κ[ϵ]/(ϵ2). Unwinding the definitions, we find that the dual space
Homκ(π−1Mη, κ) can be identified with the set of automorphisms of the base change
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ηA such that they restrict to be the identity of η. It remains to prove that this set
is trivial. This boils down to the following assertion in classical algebraic geometry.

Let X/κ be a scheme, L be a line bundle over X, and assume LA

is also a line bundle over XA. If f is an automorphism of LA such
that f |L is the identity on L, then f is the identity.

This can be proved, mutatis mutandis, as in the last part of [Lur18a, proof of
Proposition 2.2.6]. □

3. Level structures for spectral abelian varieties

3.1. Level structures on elliptic curves. Let C be a one-dimensional smooth
commutative group scheme over a base scheme S, and A be an abstract finite
abelian group. A homomorphism of abstract groups

ϕ : A→ C(S)

is said to be an level-A structure on C/S if the effective Cartier divisor D in C/S
defined by

D = Σa∈A[ϕ(a)]

is a subgroup of C/S.
The following result due to Katz-Mazur [KM85] gives the representability of level

structures moduli problems.

Proposition 3.1. [KM85, Proposition 1.6.2] Let C/S be a one-dimensional smooth
commutative group scheme over S. Then the functor

LevelC/S : SchS → Set

T 7→ the set of level-A structures on CT /T

is representable by a closed subscheme of Hom(A,C) ∼= C[N1]×S · · · ×S C[Nr].

Definition 3.2. Let E/R be a spectral elliptic curve. In the level of objects, a
derived level-A structure is a relative Cartier divisor ϕ : D → E of E, such that
the underlying morphism D♡ → E♡ is the inclusion of the associated relative
Cartier divisor Σa∈A[ϕ0(a)] into E♡, where ϕ0 : A → E♡(R♡) is any classical
level structure. We let Level(A, E/R) denote the ∞-category of derived level-A
structures of E/R, whose objects can be viewed as pairs ϕ = (D,ϕ).

It is easy to see that for a spectral elliptic curve E/R, the∞-category Level(A, E/R)
is a∞-groupoid, since it is a full subcategory of CDiv(E/R), which is a∞-groupoid.

Lemma 3.3. Let E/R be a spectral elliptic curve and ϕS : D → E be a derived level
structure. Suppose that T → S be a morphism of nonconnective spectral Deligne–
Mumford stacks, then the induced morphism ϕS : DT → ET is a derived level
structure of ET /T .

Proof. We notice that the derived level structure is stable under base change. So
ϕ♡S : A → (E ×S T )♡(T0) = E♡(T0) is a classical level structure, so D♡T is the
associated classical relative Cartier divisor of a classical level structure. And DT →
ET is a relative Cartier divisor in spectral algebraic geometry, this is just the base
change of the relative Cartier divisor (Lemma 2.14). □
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We first recall a proposition in Katz and Mazur’s book [KM85, Corollarly 1.3.7]:
Suppose that C/S is a smooth group curve, and D is a relative Cartier divisor of C,
then exists a closed subscheme Z of S, satisfying for any T → S, DT is a subgroup
of CT if and only if T passing through Z.

Lemma 3.4. Let E/R be a spectral elliptic curve, and D → E be a relative Cartier
divisor. There exists a closed spectral Deligne–Mumford substack SpétZ ⊂ SpétR,
satisfying the following universal property:

For any S ∈ CAlgcnR , such that the associated sheaf of DS is a relative Cartier
divisor of XS and (DS)

♡ is a subgroup of (ES)
♡ if and only if R→ S factor through

Z.

Proof. For a map R→ S, it is obvious that DS is a relative Cartier divisor of XS .
By [KM85, Corollarly 1.3.7], we just notice that if (DS)

♡/π0S is a subgroup of
(ES)

♡/π0S, we have Specπ0S must passing through a closed subscheme SpecZ0 of
Specπ0R. This corresponds to a closed spectral subscheme SpecZ of SpecR, sin

ce we have the map R → S such that π0R → π0S pass through π0R/I for
some ideal I of π0R, so we have R → S passing through RNil(I), see [Lur18c,
Chapter 7] for details about nilpotent R-module. Conversely, suppose that R→ S
passes through Z, then we have OSpétS vanishing on I. That is we have π0R→ π0S

passing through π0R/
√
I, but this is equivalent to say Specπ0S → Specπ0R passing

through Specπ0R/I = SpecZ0, and so (DS)
♡ is a subgroup of (ES)

♡. □

Theorem 3.5. Let E/R be a spectral elliptic curve, then the functor

LevelE/R : CAlgcnR → S
R′ 7→ Level(A, ER′/R′)

is representable by a closed substack S(A) of CDivX/R. Moreover, S(A) = SpétPE/R

for an E∞-ring PE/R, which is locally almost of finite presentation over R.

Proof. By definition, the functor LevelE/R is a subfunctor of the representable func-
tor CDivX/R. We consider a spectral Deligne–Mumford stack GroupCDiv defined
by the pullback diagram of spectral Deligne–Mumford stacks

GroupCDivE/R

��

// CDivE/R

��
SpétZ // SpétR.

It is easy to say that GroupCDivE/R valued on a R-algebra R′ is the space of

relative Cartier divisors D of E ×SpétR SpétR′, such that D♡ is a subgroup of
(E ×SpétR SpétR′)♡. It is clear that

GroupCDivE/R =
∐

A0∈FinAb

A0 − CDivE/R

where A0−CDivE/R valued on a R-algebraR′ is the space of relative Cartier divisors

D of E×SpétRSpétR′, such that D♡ is an algebric subgroup of (E×SpétRSpétR′)♡

and D♡(R′) = A0. It is cleared that LevelE/R = A−CDivE/R, so we have LevelE/R

is representable by a open substack of GroupCDivE/R.

To prove the second part, we consider the map S(A)→ SpétR, they are all spec-
tral algebraic spaces. By [Lur18c, Remark 5.2.0.2], a morphism between spectral
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algebraic spaces is finite if and only if its underlying morphism between ordinary
spectral algebraic space is finite in ordinary algebraic geometry. So we only need to
prove S(A)♡ is finite over Specπ0R, but this is just the classical case since S(A)♡

is the representable object of the classical level structure, which is finite over R0 by
[KM85, Corollary 1.6.3]. □

3.2. Level structures on p-divisible groups. Before we talk about derived level
structures of spectral p-divisible groups, let us first review something about the
classical level structures of commutative finite flat group schemes. Let X/S be a
finite flat S-scheme of finite presentation of rank N , it can be proved that X/S is
finite locally free of rank N . This means that for every affine scheme SpecR→ S,
the pullback scheme X×S SpecR over SpecR have the form SpecR′, where R′ is an
R-algebra which is locally free of rank N . For an element f ∈ R′ which can act on
R′ by multiplication, define an R-linear endomorphism of B′. Because R′ is locally
free of rank N . Then multiplication of f can be representable by a N ×N matrix
Mf . Then we can define the characteristic polynomial of f to be the characteristic
polynomial of Mf , i.e.,

det(T − f) = det(T −Mf ) = TN − trace(Mf ) + · · ·+ (−1)NNorm(f).

Let {P1, · · · , PN} be a set of N points in X(S), we say this set is a full set of
sections of X/S if one of the following two conditions are satisfied:

(1) For any SpecR→ S, and f ∈ B = H0(XR,O), we have the equality

det(T − f) =

N∏
i=1

(T − f(pi)).

(2) For every SpecR→ S, and f ∈ B = H0(XR,O), we have

Norm(f) =

N∏
i=1

f(pi).

Actually, these conditions are equivalent.

If we have N not-necessarily-distinct points {P1, · · · , PN} in X(S), then we have
a morphism

OZ →
⊗
i

(Pi)∗(OS)

of sheave over X. It is easy to see that this map is surjective, and it defines a
closed subscheme D of X, which is flat, proper over S. So by the construction, for
a ϕ : A→ X(S), we can define closed subscheme D of X which corresponds to the
sheave ⊗a∈Aϕ(a)∗OS .

Lemma 3.6. For a finite flat and finite presentation S-scheme Z, Hom(A,Z) is
an open subscheme of HilbZ/S.

Proof. Let T → S be a S-scheme, for any D → Y = T×SZ in Hilb(Y ) = Hilb(T×S

Z), we need to prove that the set of points t ∈ T which satisfying Dt → Yt is coming
from the closed subscheme associated with a map ϕ : A→ Z(T ) = Y (T ) is an open
subset of T. Since D is the closed subscheme defined by OY → OD, if Dt comes
form OY |t →

⊗
(Pi)∗(OT )|t. Then by the definition of stalks of sheaves, there

exists an open subset U of D such that t ∈ U , and DU is defined by OY |U →⊗
(Pi)∗(OT )|U . □
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Definition 3.7. Suppose that G/S is a rank N commutative finite flat S-group
scheme of finite presentation and A is a finite abelian group of order N . A group
homomorphism

ϕ : A→ G(S)

is called an A-generator of G/S, if the N points {ϕ(a)}a∈A are a full subset of
sections of G(S). In these cases, we say ϕ is a Drinfeld level structure.

Proposition 3.8. [KM85, Proposition 1.10.13] Suppose that G is a rank N finite
flat commutative group scheme of finite presentation over S and A is a finite abelian
group of order N . Then we have the following two propositions:

(1) The functor A−Gen(G/S) on S-schemes defined by

T 7→ {ϕ|ϕ : A→ G(T ) is a Drinfeld level structure}

is representable by a finite S-scheme of finite presentation. Actually, it is
the closed subscheme of HomSchS

(A,G) over which the image of sections
{ϕuniv(a)}a∈A of the universal homomorphism ϕuniv : A → G form a full
set of sections.

(2) If G/S is finite étale over S of rank N, we have

A−Gen(G/S) ≃ IsomSchS
(A,G),

such that each connected component of S, A−Gen(S) is either empty or is
a finite étale Aut(A)-torsor.

Derived Level Structures of Spectral Finite Flat Group Schemes: For a
spectral commutative finite flat group scheme G over R. By the definition of finite
flat, we have G = SpétB for a finite flat R-algebra B. We let Hilb(G/R) denote the
full subcategory of SpDM/G spanned by those D → G such that D → G is a closed
immersion of spectral Deligne–Mumford stacks, and the composition D → G→ R
is flat, proper and locally almost of finite presentation. Then we find Hilb(G/R) is
actually equivalent to the ∞-category of diagrams which have the form

R //

  

B

~~
R′

such that R′ is flat, proper and locally almost of finite presentation over R and
satisfies certain conditions. It is easy to see that Hilb(G/R) is a Kan complex.
Then we can define a functor

HilbG/R : CAlgcnR → S
R′ → Hilb(GR′)

Theorem 3.9. Suppose that G is a commutative finite flat group scheme over
an E∞-ring R, then HilbG/R is representable by a spectral Deligne–Mumford stack
which is locally almost of finite presentation over R.

Proof. This is just a special case of spectral algebraic geometry version of Lurie’s
theorem [Lur04, Theorem 8.3.3]. □

Remark 3.10. We can prove this theorem by the same argument of the proof of
representability of relative Cartier divisors.
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Definition 3.11. Let G be a spectral commutative finite flat group scheme of rank
N over an E∞-ring R, and A be an abstract finite abelian group of order N , an
level-A structure of G is an object ϕ : D → G in Hilb(G/R), such that π0ϕ∗OD ≃
⊗ϕ(a)∗OSpecπ0R, where ϕ(a)∗OSpecπ0R comes from a map ϕ : A→ G♡(π0R).

Lemma 3.12. Let G/R be a spectral commutative finite flat group scheme of rank
N over an E∞-ring R and let D be a Hilbert closed subscheme of G. Then there
exists a E∞-ring Z, satisfying the following universal property:

For any R→ R′ in CAlgcnR , (DR′)♡ is a derived level-A structures of (GR′)♡ if
and only if R→ R′ factor through Z.

Proof. For R → R′ in CAlgcnR , it is obvious that DR′ is in Hilb(GR′/R′). This
means that (DR′)♡ is a Hilbert closed subscheme of (GR′)♡. For DR′ to be a

derived level structure, we have D♡R′ must lie in Hom(A,G♡)(π0R
′), this means

that Specπ0R
′ → Specπ0R must passing through an open of Specπ0R, since

Hom(A,G♡) can be viewed as a open sub scheme of Hilb(G♡/R♡). Then we have
π0R → π0R

′ passing through W0, where W0 is a localization of π0R, so we have
R→ R′ must passing through W , where W is an E∞-ring, which is a localization of
R. As for now, we already have a map SpétR′ → SpétW , such thatDR′ is a Hilbert
closed subscheme of GR′ , and π0i∗ODR′ comes from a map ϕ : A→ G♡(π0R

′). For
DR′ want to be a derived level structure, OG♡ → ϕ(a)∗(OSpecπ0R′) needs to be an
isomorphism, i.e., these N points ϕ(a)a∈A must be a full section of G♡(π0R

′). By
[KM85, Proposition 1.9.1], for a set of N points of (G♡(π0R

′)) to be a full section
of G♡(π0R

′), Specπ0R
′ → Specπ0W must passing through a closed subscheme

of SpecW0. Then π0W → π0R
′ must passing through Z0, where Z0 is equals

π0W/I for some ideal I of π0W . This means that we have W → R′ pass through
Z = WNil(I). By the discussion above, we have Z is the desired E∞-ring. And the
converse is also true by using the same discussion in the derived level structures of
curves.

□

Proposition 3.13. Suppose that G is a spectral commutative finite flat group
scheme of rank N over an E∞-ring R and A is an abstract finite abelian group
of order N . Then the following functor

LevelAH/R : CAlgR → S; R′ → Level(A, GR′/R′)

is representable by an affine spectral Deligne–Mumford stack S(A) = SpétPG/R.

Proof. We first prove the representability. By definition, the functor LevelAG/R is a
subfunctor of the representable functor HilbG/R. We consider a spectral Deligne–
Mumford stack S(A) defined by the pullback diagram of spectral Deligne–Mumford
stacks

S(A)

��

// HilbG/R

��
SpétZ // SpétR.

It is easy to say that S(A) valued on an R-algebra R′ is the Hilbert closed subscheme
D of E ×SpétR SpétR′, such that D♡ is a derived level A-structure of (E ×SpétR

SpétR′)♡. Then S(A) is the desired stack.



24 XUECAI MA AND YIFEI ZHU

For the affine condition, we need to prove that S(A) is finite in spectral algebraic
geometry. By [Lur18c, Remark 5.2.0.2], a morphism between spectral algebraic
spaces is finite if and only if its underlying morphism between ordinary spectral
algebraic space is finite in ordinary algebraic geometry. We have S(A) and SpétR
are spectral spaces. So we only need to prove S(A)♡ is finite over R0, but this is
just the classical case, which is finite by [KM85, Proposition 1.10.13]. □

Remark 3.14. We let FFG(R) denote the∞-category of spectral commutative finite
flat group schemes over an E∞-ring R. By [Lur18a, Proposition 6.5.8], there is
another equivalent definition of spectral p-divisible group [Lur18b, Definition 6.0.2].
A spectral p-divisible group over a connective E∞-ring R is just a functor

G : CAlgcnR → ModcnZ

which satisfies the following conditions:

(1) Suppose that S ∈ CAlgcnR , the spectrumG(S) is p-nilpotent, i.e., G(S)[1/p] ≃
0.

(2) For M be a finite abelian p-group, the functor

CAlgcnR → S, S 7→ MapModZ
(M,G(S))

is copresentable by a finite flat R-algebra.

Let X be a spectral p-divisible group of height h over an E∞-ring R, that is a
functor

X : Abpfin → FFG(R).

For every pk ∈ Abpfin, we let X[pk] denote the image of pk of X. We find that X[pk]

is a rank (pk)h spectral commutative finite flat group schemes over R.

Definition 3.15. Let G be a spectral p-divisible group of height h over a connective
E∞-ring R. For A a finite abelian group, an derived (Z/pkZ)h-level structure of G
is a derived (Z/pkZ)h-level structure

ϕ : D → G[pk]

ofG[pk], which is a spectral commutative finite flat scheme overR. We let Level(k,G/R)
denote the ∞-groupoid of derived (Z/pkZ)h-level structures of G/R.

Theorem 3.16. Let G be a spectral p-divisible group of height h over an E∞-ring
R. Then the following functor

LevelkG/R : CAlgR → S; R′ → Level(k,GR′/R′)

is representable by an affine spectral Deligne–Mumford stack S(k) = SpétPk
G/R.

Proof. We just notice that by the definition of spectral p-divisible group, G[pk] is a
spectral commutative finite flat scheme. Then the theorem follows from the above
result of the general spectral commutative finite flat group scheme. □

Non-Full Level Structures
The above cases only care full-level structures of commutative finite flat schemes,

actually we can define general-level structures of finite flat group schemes. Let G
be a spectral commutative finite flat group scheme of rank N over an E∞-ring R,
and A be an abstract finite abelian group, an derived level-A structure of G is an
object ϕ : D → G in Hilb(G/R), such that D♡ is a subgroup of G and G♡(π0R)
is isomorphic to A. We let Level1(A, G/R) denote the space of derived level-A
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structure. And Level0(A, G/R) denote the space of equivalence class D → G in
Hilb(G/R) such that G♡(π0R) is isomorphic to A, two object D,D′ are equivalent
if the image of D♡ → G♡ and D′♡ → G♡ are same.

Proposition 3.17. Suppose that G is a spectral commutative finite flat group
scheme of rank N over an E∞-ring R and A is an abstract finite abelian group
of order not necessarily equal to N. Then the following functor

Level1,AG/R : CAlgcnR → S; R′ → Level1(A, GR′/R′)

is representable by an affine spectral Deligne–Mumford stack.

Proof. We just noticed that the classical level structure functor Level(A,G♡/π0R)
is representable by a closed subscheme Hom(A,G), using the same discussion of
full-level case, we get the desired result. □

Remark 3.18. The above proposition is also true for Level0,A. By the spectral
commutative finite flat scheme cases, we can get the representability results of the
spectral p-divisible group case.

We let Level1(k,G/R) denote the∞-groupoid of derived (Z/pkZ)-level structures
of G/R. Then the following functor

Level1,kG/R : CAlgcnR → S; R′ → Level1(k,GR′/R′)

is representable by an affine spectral Deligne–Mumford stack S1(k) = SpétP1,k
G/R.

We let Level0(k,G/R) denote the ∞-groupoid of derived (Z/pkZ)-level genera-
tors of G/R. Then the following functor

Level0,kG/R : CAlgcnR → S; R′ → Level0(k,GR′/R′)

is representable by an affine spectral Deligne–Mumford stack S0(k) = SpétP0,k
G/R.

4. Moduli problems associated with derived level structures

4.1. Spectral elliptic curves with level structure. There exists a spectral
Deligne–Mumford stackMell whose functor of points is

Mell : CAlgcn → S
R 7−→Mell(R),

whereMell(R) = Ell(R)≃ is the underline∞-groupoid of the∞-category of spectral
elliptic curves over R.

And we have the classical Deligne–Mumford stack of classical elliptic curves,
which can be viewed as a spectral Deligne–Mumford stack

Mcl
ell : CAlgcn → S

R 7−→Mcl
ell(π0R)

where Mcl
ell(π0R) is the groupoid of classical elliptic curves over the commutative

ring π0R.
And for A denote Z/NZ, or Z/NZ × Z/NZ, we have the classical Deligne–

Mumford stack of classical elliptic curves with level-A structures, which can also
be viewed as a spectral Deligne–Mumford stack.

Mcl
ell(A) : CAlgcn → S

R 7−→Mcl
ell(A)(π0R)
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whereMcl
ell(A)(π0R) is the groupoid of classical elliptic curves with level A-structures

over the commutative ring π0R.
In last chapter, we define and study derived level structures. The construction

X 7→ Level(A, X/R) determines a functor Ell(R) → S which is classified by a left
fibration Ell(A)(R)→ Ell(R). Objects of Ell(A)(R) are pairs (E, ϕ), where E is a
spectral elliptic curve and ϕ is a derived level structure of E.

For every R ∈ CAlgcn, we can consider all spectral elliptic curves over R with
derived level structures. This moduli problem can be thought of as a functor

Mell(A) : CAlgcn → S
R 7−→Mell(A)(R) = Ell(A)(R)

where Ell(A)(R) is the space of spectral elliptic curves E with a derived level
structure ϕ : A → E.

Proposition 4.1. The functorMell(A) : CAlgcn 7→ S is an étale sheaf.

Proof. Let {R→ Ui} be an étale cover of R, and U• be the associate check simplicial
object. We consider the following diagram

Ell(A)(R)≃
f //

p

��

lim∆ Ell(A)(U•)≃

q

��
Ell(R)≃

g // lim∆ Ell(U•)
≃.

The left map p is a left fibration between Kan complex, so is a Kan fibration
[Lur09b, Lemma 2.1.3.3]. The right vertical map is pointwise Kan fibration. By
picking a suit model for the homotopy limit we may assume that q is a Kan fibration
as well. We have g is an equivalence by [Lur18a, Lemma 2.4.1]. To prove that f is
an equivalence. We only need to prove that for every E ∈ Ell(R), the map

p−1E ≃ Level(A, E/R)→ lim
∆

Level(A, E ×R U•/U•) ≃ q−1g(E)

is an equivalence. We have the Level(A, E) as full ∞-subcategory of CDiv(E/R)
and lim∆ Level(A, E ×R U•) as a full subcategory of

lim
∆

CDiv(E ×R U•(U•))

But CDiv is an étale sheaf. So the functor

Level(A, E/R)→ lim
∆

Level(A, E ×R U•/U•).

is fully faithful. To prove it is an equivalence, we only need to prove it is essentially
surjective.

For any {ϕU• : D → E ×R U•} in lim∆ Level(A, E ×R U•/U•). Clearly, we can
find a morphism ϕR : D → E in CDiv(E/R) whose image under the equivalence
CDiv(E/R) ≃ lim∆ CDiv(E ×R U•/U•) is {ϕU• : D → E ×R U•}. We just need to
prove: ϕR : D → E is a derived level structure. This is true since in the classic
case, Level(A,E♡(R0)) ≃ lim∆ Level(A,E♡(τ≤0U•)) and ϕR : D → E is already a
relative Cartier divisor. □

Lemma 4.2. Mell(A) : CAlgcn → S is a nilcomplete functor, i.e., Mell(A)(R) is
the homotopy limit of the following diagram

· · · → Mell(A)(τ≤mR)→Mell(A)(τ≤m−1R)→ · · · →Mell(A)(τ≤0R)
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Proof. For a spectral elliptic curve R, there is an obvious functor

θ :Mell(A)(R)→ lim
←n
Mell(A)(τ≤nR)

define by (E, ϕ : D → E) 7→ {(E ×SpétR Spét τ≤nR,ϕn : D ×SpétR Spét τ≤nR →
E ×SpétR Spét τ≤nR)}n. Here we notice that (E ×SpétR Spét τ≤nR,ϕn : D ×SpétR

Spét τ≤nR→ E ×SpétR Spét τ≤nR) is inMell(A)(τ≤nR).
First, we prove that θ is essentially surjective. An object in lim

←m
Mell(A)(τ≤mR)

can be written as a diagram

· · · //

��

Dn+1
//

��

Dn
//

��

Dn−1 //

��

· · · //

��

D0

��
· · · // En+1

// En
// En−1 // · · · // E0

where each En is spectral elliptic curve over τ≤nR and Dn → En is a de-
rived level structure, and satisfying Dn = Dn+1 ×Spét τ≤n+1R Spét τ≤nR,En =
En+1 ×Spét τ≤n+1R Spét τ≤nR. By the nilcompletness of Mell, we get a spectral
elliptic curves E, such that E ×R τ≤nR ≃ En, and by the nilcompletness of Var+
[Lur18c, Proposition 19.4.2.1], we get a spectral Deligne–Mumford stack D, such
that Dn = D ×SpétR Spét τ≤nR. We need to prove the induced map D → E is a
derived level structure, but this follows form nilcompletness of LevelE/R.

Second, we need to prove that this functor is fully faithful. Unwinding the defi-
nitions, we need to prove that for every (X,D1 → X), (Y,D2 → Y ) ∈Mell(A)(R),
the following map is a homotopy equivalence.

MapMell(A)(R)((X,DX), (Y,DY ))→ MapMell(A)(R)(lim←n
(Xn, DX,n), lim←n

(Ym, DY,m)).

where Xn is τ≤nX = X ×R τ≤nR, and Y , DX,n, DY,n similarly.
But we notice that this is equivalent to the following equivalence

MapSpDM/R
((X,DX), (Y,DY ))→ lim

←−n
MapSpDMτ≤n

((Xn, DX,n), (Yn, DY,n)).

And this equivalence follows from [Lur18c, Proposition 19.4.1.2] □

Lemma 4.3. Mell(A) : CAlgcn → S is a cohesive functor.

Proof. For every pullback diagram

D //

��

A

��
C // B

in CAlgcn such that the underlying homomorphisms π0A → π0B ← π0C are sur-
jective. We need to prove that

Mell(A)(D) //

��

Mell(A)(A)

��
Mell(A)(C) //Mell(A)(B)

is a pullback diagram.
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We have the following diagram in Fun(CAlgcn,S),

Mell(A)
g //

f
%%

Mell

h

��
∗

By [Lur18c, Remark 17.3.7.3], Mell ∗ (A) is a cohesive fucntor if and only if f
is cohesive. Since we have Mell is cohesive functor, h is a cohesive morphism in
Fun(CAlgcn,S). And again by [Lur18c, Remark 17.3.7.3], f is cohesive if and only
if g is cohesive. So we only need to prove that g is a cohesive morphism. But by
[Lur18c, Proposition 17.3.8.4] g is cohesive if and only if each fiber of g is cohesive,
i.e., for R ∈ CAlgcn and a point ηE ∈ Mell(R) which represents a spectral elliptic
curve E, the functor

fE : CAlgcnR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}

is cohesive. But we have R′ 7→ Mell(A)(R′) ×Mell(R′) {ηE} ≃ Level(A, E ×R

R′/R′) ≃ LevelE/R(R
′). The cohesive ofMell(A) then follows from the cohesive of

LevelE/R.
□

Lemma 4.4. The fucntorMell(A) : CAlgcn → S is integrable

Proof. We need to prove that for R a local Noetherian E∞-ring which is complete
with respect to its maximal ideal m ⊂ π0R, then there is an equivalence

MapFun(CAlgcn,S)(SpétR
′,Mell(A))→ MapFun(CAlgcn,S)(Spf R

′,Mell(A)).

We have the following diagram in Fun(CAlgcn,S),

Mell(A)
g //

f
%%

Mell

h

��
∗

By [Lur18c, Remark 17.3.7.3],Mell(A)→ ∗ is a integrable fucntor if and only if
f is integrable. Since we haveMell is integrable functor, h is a integrable morphism
in Fun(CAlgcn,S). And again by [Lur18c, Remark 17.3.7.3], f is integrable if and
only if g is integrable. So we only need to prove that g is an integrable morphism.
But by [Lur18c, Proposition 17.3.8.4] g is integrable if and only if each fiber of g
is integrable, i.e., for R ∈ CAlgcn and a point ηE ∈ Mell(R) which represents a
spectral elliptic curve E, the functor

fE : CAlgcnR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}

is integrable. But we have R′ 7→ Mell(A)(R′) ×Mell(R′) {ηE} ≃ Level(A, E ×R

R′/R′) ≃ LevelE/R(R
′). The integrable ofMell(A) then follows from the integrable

of LevelE/R.
□

Lemma 4.5. The functor Mell(A) : CAlgcn 7→ S admits a cotangent complex
LMde

ell
, and moreover LMde

ell
is connective and almost perfect.
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Proof. We have a commutative diagram in CAlgcn → S,

Mell(A)
g //

f
%%

Mell

h

��
∗

Since we have h is infinitesimally coheisve and admits a connective cotangent com-
plex, and f,g is infinitesimally cohesive. By [Lur18c, Proposition 17.3.9.1], to prove
that f admits a cotangent complex. We only need to prove g admits a relative
cotangent complex. By [Lur18c, Proposition 17.2.5.7], a morphism j : X → Y in
Fun(CAlgcn,S) admits a relative cotangent complex if and only if, for any corepre-
sentbale Y ′ = Map(R,−) : CAlgcn → S and any natural transformation Y ′ → U ,
j′ in the following pullback diagram admit a cotangent complex.

Y ′ ×Y X

j′

��

// X

j

��
Y ′ // Y

To prove thatMell(A)→Mell admits a cotangent complex, we just need to prove
that for any R ∈ CAlgcn, and a spectral elliptic curve E which represents a natural
transformation SpecR→Mell. The functor

CAlgR → S, R′ 7→ Mell(A)(R′)×Mell(R′) {ηE}
admits a connective cotangent complex. But we haveMell(A)(R′)×Mell(R′){ηE} =
Level(E ×R R′) = LevelE/R(R

′). So the results of f : Mell(A) → ∗ admits a
cotangent complex follows from LevelE/R admits a cotangent complex. And the
properties of connective and almost perfect also follow from the property of the
cotangent complex of LevelE/R. □

Lemma 4.6. The functorMell(A) : CAlgcn 7→ S is locally almost of finite presen-
tation.

Proof. Consider the functorMell(A)→ ∗, it is infinitesimally cohesive and admits
an almost perfect cotangent complex, so by [Lur18c, 17.4.2.2], it is locally almost
of finite presentation. So Mell(A) is locally almost of finite presentation, since ∗
is a final object of Fun(CAlgcn,S).

□

Theorem 4.7. The functor

Mell(A) : CAlg→ S
R 7−→Mell(A)(R) = Ell(A)(R)≃

is representable by a spectral Deligne–Mumford stack.

Proof. By the spectral Artin representability theorem, we need to prove that the
functorMell(A) satisfies the following condition

(1) The spaceMell(A)(R0) is n-truncated for every discrete commutative ring
R0.

(2) Mell(A) is a sheaf for the étale topology.
(3) Mell(A) is a nilcomplete, infinitesimally cohesive, and integrable functor.
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(4) Mell(A) admits a cotangent complex LMell(A) which is connective.
(5) Mell(A) is locally almost of finite presentation.

But these follow from the above series of lemmas. □

4.2. Higher-homotopical Lubin–Tate towers. We recall that for a height h p-
divisible group G0 over a commutative ring R0 and suppose A ∈ CAlgadcpl. We recall
that a deformation of G0 over R is a spectral p-divisible group over R together with
an equivalence class of G0-tagging of G. We let Level(k,G/R) denote the space
of derived (Z/pkZ)h-level structure of a height h spectral p-divisible group. We
consider the following functor

Mk : CAlgadcpl → S
R→ DefLevel(G0, R, k)

where DefLevel(G0, R, k) is the ∞-category whose objects are triples (G, ρ, η)

(1) G is a spectral p-divisible group over R.
(2) ρ is an equivalence of G0 taggings of R.
(3) η : D → G is a derived (Z/pkZ)h-level structure of G.

Theorem 4.8. The functor Mk is corepresentable by a E∞-ring which is finite
over the unoriented spectral deformation ring of G0.

Proof. We let Euniv/R
un
G0

denote the universal spectral deformation of G0/R0. Sup-
pose that G is a spectral deformation G0 to R, we get a map of E∞-rings Run

G0
→ R,

and an equivalence Euniv ×Run
G0

R ≃ G of spectral p-divisible groups. By the uni-

versal objects of level structures. We have the following equivalence

Level(k,G/R) ≃ Level(k,Euniv ×Run
G0

R) ≃ MapCAlgad,cpl
Run

G0

(PEuniv/Run
G0

, R),

where PEuniv/Run
G0

is the universal object of derived level structure functor associated

with the p-divisible group Euniv/R
un
G0

.
Then we consider the following moduli problem

CAlgadcpl → S, R 7→ MapCAlgad,cpl
R0

(PEuniv/Run
G0

, R).

For R ∈ CAlgad,cplR0
, MapCAlgad,cpl

R0

(PEuniv/Run
G0

, R) can viewed the ∞-categories of

pairs (α, f), where

α : Run
G0
→ R

is the classified map of a spectral p-divisible group G, which is a deformation of G0,
that is α = (G, ρ), and f ∈ MapCAlgad,cpl

Run
G0

(PEuniv/Run
G0

, R) = Level(k,Euniv ×Run
G0

R)

is a derived level structure of G/R. So we get MapCAlgad,cpl
R0

(PEuniv/Run
G0

, R) is just

the ∞-category of pairs (G, ρ, η). By lemma 3.16, PEuniv/Run
G0

is finite over Run
G0

.

So we have PEuniv/Run
G0

is the desired spectrum. □

Although we get spectra come from conceptually derived moduli problems, these
spectra may be complicated, since we didn’t know the homotopy groups. In alge-
braic topology, the orientation of E∞-spectra makes E2 page of Atiyah-Hirzebruch
spectral sequences degenerating and give us the information of homotopy groups.
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Let G0 be a height h p-divisible group over RG0
. We consider the following

functor

Mor
k : CAlgadcpl → S

R→ DefLevelor(G0, R, k)

where DefLevelor(G0, R, k) is the space of four tuples (G, ρ, e, η), where

(1) G is a spectral p-divisible over R.
(2) ρ is an equivalence class of G0 taggings of R.
(3) e : S2 → Ω∞G◦(R) is an orientation of the G◦, where G◦ is the identity

component of G.
(4) η : D → G is a derived (Z/pkZ)h-level structure of G.

Theorem 4.9. The functor Mor
k : CAlgadcpl → S is corepresentable by an E∞-ring

JKk, which is finite over the orientated deformations ring Ror
G0

.

Proof. Let Defor(G0, R) denote the ∞-groupoid of triples (G, ρ, e), where G is
a p-divisible of over R, ρ is an equivalence class of G0-taggings of R, and e is an
orientation of the identity conpoment of G. By [Lur18b, Theorem 6.0.3 and Remark
6.0.7], the functor

Mor : CAlgadcpl → S
R→ Defor(G0, R)

is corepresnetable by the orientated deformation ring Ror
G0

, that is we have an
equivalence of spaces

MapCAlgad
cpl

(Ror
G0

, R) ≃ Defor(G0, R).

Let Eor
univ be the associated universal orientation deformation of G0 to Ror

G0
, then it

is obvious that JLk = PEor
univ/R

or
G0

, the universal object of derived level structures

of Eor
univ/R

or
G0

, is the desired spectrum similar to th unorientated case. □

We call this spectrum JLk the Jacquet-Langlands spectrum. It is easy to see
that this JLk admit an action of GLh(Z/pkZ)× Aut(G0). And when k varies, we
have a tower

...

��
SpétJLk

��
SpétJLk−1

��
...

��
SpétJL0.
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We call this tower a higher categorical Lubin–Tate tower.
In classical arithmetic geometry, the Lubin–Tate tower can be used to realize

the Jacquet-Langlands correspondence [HT01]. Is there a topological realization of
the Jacquet-Langlands correspondence? Actually, in a recent paper [SS23], they
already realized a version of topological Jacquet-Langlands correspondence. But
their method is based on the Goerss-Hopkins-Miller-Lurie sheaf. They consider the
degenerate level structures such that representing objects is étale over representing
objects of universal deformations.

We hope our higher categorical analogues of Lubin–Tate towers can also establish
a topological version of the classical Langlands correspondence, which means that
we construct representations on the category of spectra.

4.3. Topological lifts of power operation rings. We recall the deformation of
formal groups. Let G0 be a formal group over a perfect field k such that chark = p
, a deformation of G0 to R is a triple (G, i,Φ) satisfying

• G is a formal group over R,
• There is a map i : k → R/m
• There is an isomorphism Φ : π∗G ∼= i∗G0 of formal groups over R/m.

Suppose that we have a complete local ring R whose residue filed has charac-
teristic p. Let ϕ : R → R, x 7→ xp be the Frobenius map. For each formal group
G over R, the Frobenius isogeny Frob : G → ϕ∗G is the homomorphism of the
formal group over R induced by the relative Frobenius map on rings. We write
Frobr : G→ (ϕr)∗G which is the composition ϕ∗(Frobr−1) ◦ Frob

Let G0 be a formal group over k, (G, i, α) and (G′, i′, α′) be two deformations of
G0 to R. A deformation of Frobr is a homomorphism f : G→ G′ of formal groups
over R which satisfying

(1) i ◦ ϕr = i′ and i∗(ϕr)∗G0 = (i′)∗G0.

k
i′ //

ϕr

��

R/m

k

i
==

(2) the square

i∗G0
i∗(Frobr)//

α

��

i∗(ϕr)∗G0

α′

��
π∗G

π∗(f) // π∗G′

of homomorphisms of formal groups over R/m commutes.

We let DefR denote the category whose objects are deformations fo G0 to R,
and whose morphisms are deformations of Frobr for some r ≥ 0. We will say that a
morphism in DefR has height r, if it is a deformation of Frobr, and then we denote
the corresponding subcategory as SubrR. Let G be the deformation of G0 to R,
then it can be proved that the assignment f → Kerf is a one-to-one correspondence
between the morphisms in SubrR with source G and the finite subgroup of G which
have rank pr.
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Theorem 4.10. [Str97] Let G0/k be a height n formal group over a perfect field k.
For each r > 0, there exists a complete local ring Ar which carries a universal height
r morphism fr

univ : (Gs, is, αs) 7→ (Gt, it, αt) ∈ Subr(Ar). That is the operation
fr
univ → g∗(fr

univ) define a bijective relation from the set of local homomorphism
g : Ar → R to the set SubrR. Furthermore, we have:

(1) A0 ≈W (k)[[v1, · · · , vn−1]] is the Lubin–Tate ring.
(2) There is a map s : A0 → Ar which classifies the source of the universal

height r map, i.e. Gs = s∗GE, where GE = Guniv/A0 be the universal
deformation of G0, and Ar is finite and free as an A0 module.

(3) There is a map t : A0 → Ar which classifies the target of the universal
height r map, i.e. Gt = t∗GE.

(4) And there is a bijection {g : Ar → R} → Subr(R) given by g → g∗(fr
univ)(g

∗Gs →
g∗Gt).

We know that those rings Ar, r ≥ 0 have topological meanings.

Theorem 4.11. [Str98] The ring Ar in the universal deformation of Frobenuis is
isomorphic to E0(BΣpr )/I, i.e,

Ar
∼= E0(BΣpr )/I

where I is the transfer ideal.

The collections {Ar} have the structures of graded coalgerbas, for s = sk, t =
tk : A0 → Ak, which is induced by E0 cohomology on BΣ→ ∗, we have

µ = muk,l : Ak+l : Ak+l → Ak
s⊗A0

tAl

which classifies the source, target, and composite of morphisms. So for the power
operation Rk(X)→ Rk(X ×BΣm). For x = ∗, we have

π0R→ E0(BΣpr )/I ⊗ π0R = A[r]⊗ π0R

This make π0R becomes a Γ-module, where Γ are duals of A[r].
For more details about power operation in Morava E-theory, one can see [Rez24,

Rez09] and [Rez13]. Direct computations are in [Rez08] for height 2 at the prime 2,
[Zhu14] for height 2 at prime 3, [Zhu19] for height 2 at all primes. Cases of height
> 2 are still lack of computations.

Because we have the assignment f → Kerf is a one-to-one correspondence be-
tween the morphisms in SubrR with source G and the finite subgroup of G which
have rank pr. So it is easy to see that Ar corepresent the following moduli problem

M0,r : CAlg♡k → S
R→ Def(G0, R, pr)

where Def(G0, R, pr) consists of pairs (G,H) where G is an defomration G0 to R,
and H is a rank pr subgroup of G.

Proposition 4.12. For every integer r ≥ 1, there exists a E∞-ring En,r, such that
π0En,r = Ar.

Proof. For the formal group G0 over a field k of characteristic p. We just consider
the functor CAlgadcpl → S by sending an E∞-ring R to quadruples (G, ρ, e, η), where
(G, ρ) is spectral deformation of G0 to R. e is an orientation of G◦, the identity
component G, and η ∈ Level0(k,G/R) is a derived level structure. Using the same



34 XUECAI MA AND YIFEI ZHU

argument in full-level structure and the fact Level0,kG/R is representable, see Remark

3.18. We get this proposition. □

Remark 4.13. Although we obtain spectra whose π0 are the power operation rings
of Morava E-theories. But we don’t know higher homotopy groups of these spectra,
since these spectra are not even periodic and they are not étale over Morava E-
theories. We will continue to study such spectra in the future.

5. More applications

5.1. Jacquet–Langlands spectra. The Langlands program is a project in math-
ematics which aims to relate many fileds in mathematics together, including number
theory, representation theory, and harmonic analysis. The global Langlands corre-
spondence is conjectural (bijection) between

(1) n-dimensional complex linear representations of the Galois group Gal(F̄ /F )
of a given number field F.

(2) certain representations-called automorphic representations of the n dimen-
sional general linear group GLn(AF ) with coefficients in the ring of adeles
of F, arising within the representations given by functions on the double
coset space GLn(F ) \ GLn(AF )/GLn()̧ (where O =

∏
v Op is the ring of

integers of all formal completions of F).

which compatible with certain L-function conditions. Moreover, the group GLn

can be replaced by any reductive group. The Langlands correspondence has many
specific examples in number theory. For the group GL1, this correspondence is
just global class field theory. The Langlands correspondence for GL2 leads to the
famous modularity theorem [Wil95], [TW95].

The Langlands correspondence has a local version. Let E be a local field, and
G be a reductive group over E. The local Langlands correspondence predicts that
for any irreducible smooth representation π of G(E), we can naturally associate an
L-parameter

ϕE : WE → G(C).
What we want to say in this paper is the Jacquet-Langlands correspondence.

Let K be a p-adic filed, and D a division algebra with center K and dimension
d2 over K. We fix an integer r ≤ 1, and Let G = GLn, G

′ = GLr(D), where
n = rd. The Jacquet Langlands correspondence aims to relate smooth irreducible
representations of G to those of G′, whereas the Langlands correspondence relates
such representations to degree n-representations of the absolute Galois group of K.

We care about the case r = 1, i.e, D is a center algebra over K of dimension n2.
There is a bijection between

(1) square integrable irreducible representations of D× and,
(2) square integrable irreducible representations of GLn(K).

In classical arithmetic geometry, the Lubin–Tate tower can be used to realize
the Jacquet-Langlands correspondence [HT01]. Is there a topological realization of
the Jacquet–Langlands correspondence? Actually, in a recent paper [SS23], they
already realized a version of topological Jacquet-Langlands correspondence. But
their method is based on the Goerss-Hopkins-Miller-Lurie sheaf. They actually
consider the degenerate level structures such that representing objects are étale
over representing objects of universal deformations. We hope our higher categori-
cal analogues of Lubin–Tate towers can also establish a topological version of the
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classical Langlands correspondence, which means that we construct representations
on the category of spectra. Our derived level structure give an attempt on this idea
by considering certain function spectra.

On the other hand, we know the actions of certain Galois groups and automor-
phism groups on certain objects, like Morava E-theories, THH, TC. This means
that these groups act on their homotopy groups. For example, we have the action
of Morava stabilizer groups Gn on Morava E-theories En, it can be used to compute
the stable homotopy group of spheres by the following spectral sequence

Es,t
2
∼= Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0.

But usually, it is complicated to compute the continuous cohomology of Gn. This
is common in Langlands correspondence that th Galois side is usually harder to
understand than the automorphic side. One strategy for relevant problems is to
transfer the problems in the Galois side to the automorphic side. Let’s see an
example first.

Theorem 5.1. ([BSSW24b]) There is an isomorphism of graded Q-algebras

Q⊗ π∗LK(n)S
0 ∼= ΛQp

(ζ1, ζ2, · · · ζn),
where the latter is the exterior Qp-algebra with generators ζi in degree 1− 2i.

The main of their proof of this theorem is they transfer the computation of
cohomoloy of Gn to the cohomoloyg of Drinfeld symmetric space H.

X
GLn(Zp)

}}

Gn

  
LTK H.

In a continuous work [BSSW24a], they compute the Picard group of K(n)-local
spectra by using some results of computation of Drinfeld symmetric space, which
is due to Colmez–Dospinescu–Nizio [CDN20], [CDN21].

We know that LT has a higher categorical refinement, Morava E-theories. So it
is a natural question how to lift this diagram to higher categorical setting and how
to estabilsh a more conceptual theory to transfer the computation of cohomogloy
of Gn to the computation of cohomoloyg of H.

Let G0 be a height h p-divisible group over RG0 . We consider the following
functor

Mor
k : CAlgadcpl → S

R→ DefLevelor(G0, R, k)

In subsection 3.3, we prove that this functor corepresentable by an E∞-ring JLk.
We defined the Jacquet-Langlands spectrum JL to be the limit of those JLk, i.e.,

JL = lim
←−k
JLk.

Lemma 5.2. JL is an E∞-ring.

Proof. This is because the∞-category of E∞-rings admits inverse limits, see[Lur17,
Corollary 3.2.2.4] for details. □

The spectrum is the higher categorical realization of X , the moduli of deforma-
tions with level structures. It was proved by Scholze and Weinstein [SW13] that X
is a perfectoid space.
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5.2. Jacquet–Langlands duals of Morava E-theory spectra. By the con-
struction of Jacquet–Langlands spectra above, it is easy to see that this JLk admits
an action of GLh(Z/p

kZ) × Gn. JL is the limit of JLk, so it admits an action of
limGLh(Z/p

kZ)×Gn = GLh(Zp)×Gn.

Definition 5.3. We define the dual Morava E-theories LEn to be JLhGn .

The generic fibre of π0
LEn is just the Drinfled symmetric space. The Drinfled

symmetric space was invented in [Dri76]. It is the rigid analytic space

H = Pn−1
K \ ∪

H
H,

where Pn−1
K is a rigid analytic projective space, and H run over all K-rational

hyperplanes in Pn−1
K . It has a formal model h which parametrizes the deformations

of a special formal OD-module related to G0. In a future work, we will prove that
LEn can also come from some derived moduli problems.

Theorem 5.4. EL
n is an E∞-ring spectrum.

Proof. □

Proposition 5.5. There are convergent spectral sequences

Es,t
2
∼= Hs

cts(Gn ×GLn(Zp), πtJL) =⇒ πt−sLK(n)S
0.

Es,t
2
∼= Hs

cts(GLn(Zp), πt
LEn) =⇒ πt−sLK(n)S

0.

Proof. This is just because for any profinte group G, and E is a G-equivarait
spectrum, we always have

Es,t
2
∼= Hs

cts(G, πtE) =⇒ πt−sE
hG.

see [May96] for more details. □

In [GV18], Galatius and Venkatesh define and study derived Galois deformations.
Let F be a global field, S is a finite set of places of F. Let k be a finite field, and G
be a split algebraic group over the Witt vectors W (k). Let ρ̄ be a representation
of π1SpecOF [1/S] in G(k). Then we can define the Galois deformation functor
M ρ̄
OF [1/s] form the category of Artinian local W (k)-algebras augmented over k to

the category of sets, by send A to the set of diagrams of the form

G(A)

��
π1SpecOF [1/s]

ρ
88

ρ̄ // G(k)

modulo conjugacy. We notice that the étale homotopy type of the scheme SpecOF [1/s]
is equal to the classify space of π1SpecOF [1/s]. After applying the classifying space
functor, and noticed that G can be extended to simplicial rings. We then define the
derived Galois deformation functor from the category of Artinian simplicial rings
to the category of spaces by sending a simplicial ring A to diagrams

BG(A)

��
Ét(OF [1/S])

ρ
88

ρ̄ // BG(k).
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It can be proved that this derived moduli problem is representable by a simplicial
ring Rρ̄

PF [1/S], and its π0 is the classical Galois deformation ring. There are vari-

ants of this construction, such as local derived deformation functor and crystalline
deformation functor, see [GV18] for more details.

Let G be a reductive group over a local field K, and U ⊂ G be a compact

open subgroup. Let A be a commutative ring, we let A[G(K)/U ] = c− Ind
G(K)
U A

denote the induced representation of the trivial representation from U to G(K).
The classical Hecke algebra for the pair (G(K), U) is

H(G(K), U : A) := HomG(K)(A[G(K)/U ], A[G(K)/U ]).

In [Ven19], Venkatesh defines the derived Hecke algebra to be

H(G(K), U ;A) := Ext∗G(K)(A[G(K)/U ], A[G(K)/U ]).

It satisfies certain good properties like the classical Hecke algebra.
These two constructions give us evidence about the homotopical version of Lang-

land correspondence for general reductive group G, but the derived Hecke algebra
doesn’t come from the symmetry of derived objects.

In recent papers [CS24] and [Dav24], there is some constructions of Hecke opera-
tion on topological modular forms. We hope to establish a general theory of Hecke
algebra in the derived algebra geometry context. In the geometric Langlands cor-
respondence, the construction of the Hecke stack is an important ingredient. We
want to find a reasonable construction of the derived Hecke stack that is compatible
with Hecke algebra of topological modular forms.
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[TV08] Bertrand Toën and Gabriele Vezzosi. Homotopical algebraic geometry. II. Geometric
stacks and applications, volume 193. 2008.

[TW95] Richard Taylor and Andrew Wiles. Ring-theoretic properties of certain Hecke alge-

bras. Ann. of Math. (2), 141(3):553–572, 1995.
[Ven19] Akshay Venkatesh. Derived Hecke algebra and cohomology of arithmetic groups. Fo-

rum Math. Pi, 7:e7, 119, 2019.

[Wil95] Andrew Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2),
141(3):443–551, 1995.

[Zhu14] Yifei Zhu. The power operation structure on Morava E-theory of height 2 at the

prime 3. Algebr. Geom. Topol., 14(2):953–977, 2014.
[Zhu19] Yifei Zhu. Semistable models for modular curves and power operations for Morava

E-theories of height 2. Adv. Math., 354:Paper No. 106758, 29, 2019.

Institute for Theoretical Sciences, Westlake University, Hangzhou, Zhejiang 310030,
P.R. China

Email address: maxuecai@westlake.edu.cn

Department of Mathematics, College of Science, Southern University of Science

and Technology, Shenzhen, Guangdong 518055, P.R. China

Email address: zhuyf@sustech.edu.cn


	1. Introduction
	Outline
	Notation and terminology

	2. Relative Cartier divisors of spectral Deligne–Mumford stacks
	2.1. Isogenies of spectral elliptic curves
	2.2. Cartier divisors and an exercise of spectral Artin representability

	3. Level structures for spectral abelian varieties
	3.1. Level structures on elliptic curves
	3.2. Level structures on p-divisible groups

	4. Moduli problems associated with derived level structures
	4.1. Spectral elliptic curves with level structure
	4.2. Higher-homotopical Lubin–Tate towers
	4.3. Topological lifts of power operation rings

	5. More applications
	5.1. Jacquet–Langlands spectra
	5.2. Jacquet–Langlands duals of Morava E-theory spectra

	Acknowledgements
	References

