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1 Derived Moduli Spaces
In [Lur09] and [Lur18], Lurie uses spectral algebraic geometry methods give a proof of Goerss-

Hopkins-Miller theorem for topological modular forms. Except the application of elliptic cohomology,
Lurie also proved the E∞ structures of Morava E-theories [Lur18], which use the spectral version of
deformations of formal groups and p-divisible groups. There are its rising applications in algebraic
topology. Like topological automorphic forms [BL10], the construction of equivariant topological modular
forms [GM20], elliptic Hochschild homology [ST23] and so on.

The moduli problems of deformations of formal groups with level structures are also representable and
moduli spaces of different levels form a Lubin-Tate tower [RZ96], [FGL08]. We know that the universal
objects of deformations of formal groups have higher algebra analogues which are Morava E-theories. A
natural question is what are the higher categorical analogues of the moduli problems of deformations with
level structures? And can we find higher categorical analogues of the Lubin-Tate towers. Unfortunately,
the representable object of deformations with level structures is not étale over the universal deformations,
so we can’t use the Goerss-Hopkins-Miller theorem directly. Except this, in the computation of unstable
homotopy groups of spheres, after applying the EHP-spectral sequences and Bousfield-Kuhn functor, we
find some terms in E2-page also comes form the universal deformation of isogenies of form groups. They
are computed by the Morava E-theories on the classify spaces of symmetric groups [Str97], [Str98]. They
can be viewed as sheaves on the Lubin-Tate tower. We hope a more conceptual view about this fact in
the higher categorical Lubin-Tate tower.
Question 1.1 What are the higher categorical analogues of level structures? Can they form good derived
moduli spaces?
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In the upcoming paper [Ma24], we give some attempts on this problem, we define the derived level
structures in the context of spectral algebraic geometry and give some representable results about moduli
problems associated with derived level structures, at least in the case of spectral elliptic curves.

For representability reason, we use moduli associated with sheaves to detect higher homotopy of
derived versions of level structures. For a spectral Deligne-Mumford stack X/S, a relative Cartier divisor
is a morphism D → X of spectral Deligne-Mumford stacks such that D → X is a closed immersion, the
morphism D → S is flat, proper and locally almost of finite presentation and the ideal sheaf of D is a
line bundle over X. Then we use Lurie’s representability theorem prove that the relative Cartier divisor
is representable by a spectral Deligne-Mumford stack.

Theorem 1.2. [Ma24] Let E/R be a spectral algebraic space which is flat, proper, locally almost of finite
presentation and geometric connected, then the functor

CDivE/R : CAlg → S

R′ 7→ CDiv(ER′/R′)

is representable by a spectral algebraic space which is locally almost of finite presentation over R.

We define derived level structures of spectral elliptic curves. For A an abstract abelian group, which
represents the classical Γ(N),Γ0(N) level structures of elliptic curves. Roughly speaking, a derived A-
level structure of a spectral elliptic curve E over an E∞-ring R is just a relative Cartier divisor D → E

satisfying its restriction to the heart comes from an ordinary A-level structure. We let Level(A,E/R)

denote the space of derived A-level structures of E/R. We prove that moduli problems associated with
derived level structures are representable.

Theorem 1.3. [Ma24] Let E/R be a spectral elliptic curve, then the functor

LevelE/R : CAlgcn → S

R′ 7→ Level(A,ER′/R′)

is representable by an affine spectral Deligne-Mumford stack which is locally almost of finite presentation
over R.

For the application of derived level structures, we first prove that the moduli stack of spectral
elliptic curves with derived level structures is representable by a spectral Deligne-Mumford stack. We let
Ell(A)(R) denote the space of spectral elliptic curves with derived A-level structures over a connective
E∞-ring R.

Theorem 1.4. [Ma24] The functor

Mell(A) : CAlgcn → S

R 7−→ Mell(A)(R) = Ell(A)(R)

is representable by a spectral Deligne-Mumford stack, which is locally almost of finite presentation over
the sphere spectrum S.

As we said, what we want are the higher categoric analogues of Lubin-Tate towers, so we need to
consider the moduli problem of spectral derived deformations with derived level structures.
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Let G0 be a height h p-divisible group over a commutative ring RG0
. We consider the following

functor:

Mor
m : CAlgcnk → S

R → DefLevelor(G0, R, k)

where DefLevelor(G0, R, k) is the ∞-category whose objects are four-tupes (G, ρ, e, η)

1. G is a spectral p-divisible group over R.

2. ρ is an equivalence class of G0 taggings of R.

3. e is an orientation of the identity component of G.

4. η : D → G is a derived (Z/Zk)h level structure.

Theorem 1.5. [Ma24] The functor Mor
k is representable by a formal spectral Deligne-Mumford stack

SpfJLk, where JLk is an E∞-ring which is finitely generated over Ror
G0

, here Ror
G0

is the orientated
deformation ring defined in [Lur18]. We call this spectrum Jacquet-Langlands spectrum.

Question 1.6 What properties does these spectra JLk have?
It is easy to see that these JLk admit an action of GLn(Z/p

kZ)×Aut(G0), which can be viewed as
a higher analogue of Lubin-Tate tower. Passing to the limit of m, we get action of GLn(Zp) on certain
spectra. And when k varies, we have a tower

· · ·

��
SpétJLk

��
SpétJLk−1

��
· · ·

��
SpétJL0.

We call this tower higher categorical Lubin-Tate tower. This a tower of spectral stacks and π0 of this
tower is the classical Lubin-Tate tower. We hope find more properties of this tower in later study.

It follows that [BMS19], some topological realizations of classical cohomology rings may have good
structures, like the topological Hochschild homology of quasiregualr semiperfectoid rings. These leads
to the establishment of some special p-adic cohomology theories, Breuil-Kisin cohomology theory and
its refinement, prismatic cohomology. The heart of this topic is δ-rings and its topological realization
derived δ-rings [Hol23].
Question 1.7 Does these derived rings follows form derived moduli problems?

Actually, in [Lur18], Lurie constructed the spherical Witt-vectors, which follows form derived moduli
problems, thickenings of relatively perfect morphisms . And it has many application in chromatic homo-
topy theory, like [BSY22] and [Ant23]. We hope to establish more derived moduli problems, to give us
more understand of these derived rings. And we hope the spectrum JLm is a good p-adic cohomology
theory. It will give us more arithmetic information.
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Question 1.8 Computation of JLm theory of some p-adic rings, especially for perfectoid rings.
We consider the spherical Witt-vector functor defined in [Lur18] and [BSY22].

SW : Perf → CAlg(Spp).

By this functor and the classical algebraic methods, like power operations, periodictiy, thick subcate-
gories, it may give us more information about the ∞-category of derived δ-rings. The reason we consider
chromatic methods is the appearance of v1 periodic elements in the computation of topological Hochschild
homology. We hope through the study of global properties of derived δ-rings, we can find more compu-
tation methods of K-theory and its local variant of perfectoid rings.
Question 1.9 The structures and classification of derived δ-rings.

2 Representation Theory in Derived Algebraic Geometry
We know actions of certain Galois groups and automorphism groups on certain objects, like Morava

E-theories, THH, TC. And this means that these groups acting on their homotopy groups. But can these
actions lift to derived category, i.e., we want to find representations in derived category. And there are
other reasons we need to do representation in derived category. For example, let En a formal group og
height n over a perfect field k with char k=p, we have a spectral sequence

Es,t
2 ' Hs

cts(Gn, πtEn) =⇒ πt−sLK(n)S
0

where En is the associated Morava E-theory and Gn is the Morava stabilizer group. So when consider
resolutions of Morava E-theories, it is reasonable ot consider SpH , the category of spectra admits H

actions, where H is a subgroup of Gn with finite index.
We hope to establish representation theory in derived category, like D(R), D(QCoh(X)), Sp, dStack.

But in general the derived category of G-objects in Mod(R) is not equal to the category of G-objects in
D(R). In algebraic topology, it seems that group actions of spectra are more easy to find, like actions of
Morava stabilizer groups on Morava E-theories. We proposed an viewpoint that how do we use spectral
algebraic geometry to solve this problem.

1. Representations in Vark,QCoh(X);

2. Explain these Vark,QCoh(X) as classical moduli spaces;

3. Find associated derived moduli problems in spectral algebraic geometry ;

4. Using repersentability theorem to get derived geometric objects;

5. Representations in derived categories.

Now, let’s see some examples of this strategy.
Example 2.1 (Spherical Witt Vectors) We consider the spherical Witt-vector functor defined in
[Lur18] and [BSY22].

SW : PerfFp
→ CAlg(Spp).

form the category of perfect Fp algebras to the ∞-category of p-complete E∞-rings. This functor is
defined by studying a derived moduli problem, thickenings of relatively perfect morphisms. And it has
many application in chromatic homotopy theory, like [BSY22] and [Ant23]. And it is easy to see that
this functor can find some Galois representations in derived category.
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Example 2.2 (Spectral Deformations of p-Divisible Groups) For a classical p-divisible group G0

over a perfect field k, we consider the Morava stabilizer group S = Aut(G0) ⋊Gal(k). We can consider
its spectral deformations over an E∞-ring R, which consists of pairs (G, ρ), where G is a spectral p-
divisible group over R, and ρ is an equivalence class of G0 taggings. In [Lur18], Lurie proved that there
exits an universal deformation of G0. i.e., there exists a complete adic E∞-ring Run

G0
, and a morphism

ρ : Run
G0

→ R0 such that the functor DefG0
is corepresentable by Run

G0
. i.e., for any complete adic E∞-ring

R, there is an equivalence
MapCAlgad

cpl
(Run

G0
, R) → DefG0

(R).

It is easy to see that this spectrum Run
G0

admits an action of S.
Example 2.3 (Derived Level Structures) Let k be a p-adic field with residue field k of characteristic
p. Let LTn denote the moduli space of deformations with level (Z/Zn)h-structures of a height h formal
group G0 . Passing to the direct limit over n of vanishing cycle sheaves of LTn. This give an collection
{Ψi

m} of infinite-dimensional Q̄l-vector spaces which admits admissible nature actions of the subgroup
of GLg(K)×D×K,g ×WK . By our construction of derived level structures, we find these actions can lift
to actions on certain ∞-spectra.

We want to develop a general representation theory in E∞-spectra, spectral schemes, and spectral
stacks, such that it is compatible with the classical definition of actions of algebraic groups on schemes.

Let G be an algebraic group, viewed as a 0-truncated spectral Deligne-Mumford stack, Let X be
a spectral Deligne-Mumford stack admits a G-action. Then does this make Γ(X,OX) to become a G-
equivariant spectrum? See [MLC+96] for equivariant spectra and [BH15] for the equivariant E∞-rings
setting. On the other hand, what is the meaning of the action of an algebraic group on a spectrum, since
spectra are topological, they don’t have algebraic structures.
Question 2.4 What is the right definition of algebraic groups acting on spectra stacks?

The reason we asked this question is that when we say a spectrum admits a G-action. If G is
topological group, it is fine. But when G is a algebraic group, how do we say this action is compatible
with the algebraic structure?
Question 2.5 Does the principal bundle theory holds in spectral algebraic geometry? What good
properties does spectral version BunG have in spectral algebraic geometry?

Just like the classical algebraic geometry, we want the moduli stack of principal bundles over a curve
has a good structure, but there are still something unknow in spectral algebraic geometry.

The study of BunG is related with many topics in algebraic geometry, number theory and math-
ematical physics. D-modules are important description for moduli spaces, which is useful in geometric
representation theory and Langlands correspondence. To define D-modules, we need to study differential
operators in spectral algebraic geometry. Infinitesimal deformations over a field k of characteristic zero
are governed by differential graded Lie algebras. This paradigm, which was formalised by Lurie [LD11]
and Pridham [Pri10], was recently generalized to arbitrary fields [BM19]. Over E∞-rings, formal moduli
are equivalent to spectral partition Lie algebras. These are chain complexes with extra structure, which
is parameterized by a sifted-colimit-preserving monad monad Lieπk,∆ is defined by the following properties

1. If V is a finite dimensional k-vector space, then Lieπk,∆(V ) is the linear dual of the algebraic cotangent
fiber of k ⊕ V ∨, the trivial square-zero extension of k by V ∨.

2. If V ' Tot(V •) is represented by a cosimplicial k-vector space V •, then

Lieπk,∆(V ) = ⊕
n
Tot(C̃•(Σ|Πn|⋄, k)⊗ (V •)⊗n)Σn .
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Here C̃•(Σ|Πn|⋄, k) denote the k-valued cosimplices on the space Σ|Πn|⋄, the functor (−)Σn takes
the strict fixed points, and the tensor product is computed in cosimplicial k-modules.

3. The functor Lieπk,∆ commuted with filtered colimits and geometric realizations.

4. The tangent fiber TX of any X ∈ Modulik,∆ has the structure of a Lieπk,∆-algebra.

Theorem 2.6. ([BM19]) If k is a field, there is an equivalence of ∞-categories

Modulik,∆ ' AlgLieπk,∆

between formal moduli problems and partition Lie algebra k. It sends a formal moduli problem X ∈
Modulik,∆ to its tangent fibre TX equipped with a suitable partition Lie algebra structure.

Definition 2.7 For a spectral Deligne-Mumford stack X, we let DX denote the ∞-category Lieπk,∆-
algebra objects ϕ in End(OX) satisfying for any étale morphism i : SpétR → X and any two sections
s, t : R → ∗OX , we have a equation

ϕ|SpétR(st) = sϕ|SpétR(t) + ϕ|SpétR(s)t

Remark 2.8 This is just a naive definition, the reason we used spectral partial Lie algebras, is we want
use the Koszul duality in spectra.
Question 2.9 For a spectral Deligne-Mumford stack X, is the category DX -Mod equivalent to QCoh(XdR)?

3 Topological Langlands Correspondences
Let E be a local field, G be a reductive group over E. The classical local Langlands correspondence

predict that for any irreducible smooth representation π of G(E), we can naturally associate an L-
parameter

ϕE : WE → G(C).

In the classical arithmetic geometry, the Lubin-Tate tower can be used to realize the Jacquet-
Langlands correspondence [HT01]. Is there a topological realization of the Jacquet-Langlands corre-
spondence? Actually, in a recent paper [SS23], they already realized a version of topological Jacquet-
Langlands correspondence. But their method is based on the Goerss-Hopkins-Miller-Lurie sheaf. They
actually consider the degenerate level structures such that representing object is étale over representing
object of universal deformations.

We hope our higher categorical analogues of Lubin-Tate towers can also establish a topological
version of the classical Langlands correspondence, which means that we construct representations on
the category of spectra. Our derived level structure give an attempt on this idea by considering certain
function spectra. Let G be a formal group over a field of characteristic p. By the construction of Jacquet-
Langlands spectra above, it is easy to see that this JLm admit an action of GLh(Z/p

mZ) × Aut(G0).
Let JL be its ℓ-adic complete Jacquet-Langlands spectrum. and X be a spectrum with an action of
Aut(Gn). We have the following conjecture.

Conjecture 3.1. The function spectrum F (X,JL) admits an action of GLn(Zp) and all its homotopy
groups are Zl-modules.

We know actions of certain Galois groups and automorphism groups on certain objects, like Morava
E-theories, THH, TC. And this means that these groups acting on their homotopy groups. By the
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Langlangs correspondence, we can associated certain objects which have the action of GLn, or more
generally, reductive groups. But can these objects lift to GLn equivalent spectra.

Generally we want to know how does actions of Galois side on certain objects can related to actions
of some algebraic groups on another certain objects. And the name topological Langlands correspondence
comes from that we want certain spectral algebraic geometry objects play the roles of homotopy repre-
sentations of Langlands dual groups, which can be viewed as automorphic side of topological Langlands
correspondence.
Question 3.2 Find a topological refinement of arithmetic Langlands correspondence.

In [?], Galatius and Venkatesh define and study derived Galois deformations. Let F be a global field,
S is a finite set of places of F. Let k be a finite filed, G be a split algebraic group over the Witt vectors
W (k). Let ρ̄ be a representation of π1SpecOF [1/s] in G(k). Then we can define the Galois deformation
functor M ρ̄

OF [1/s] form the category of Artinian local W (k)-algebras augmented over k to the category of
sets, by send A to the set of diagrams of the form

G(A)

��
π1SpecOF [1/s]

ρ
88

ρ̄ // G(k)

modulo conjugacy. We notice that the étale homotopy type of the scheme SpecOF [1/s] is equal to the
classify space of π1SpecOF [1/s]. After applying the classifying space functor, and notice that G can be
extend to simplicial rings. We then define the derived Galois deformation functor form the category of
Artinian simplicial rings to the category of spaces by sending a simplicial ring A to diagrams

BG(A)

��
Ét(OF [1/s])

ρ
88

ρ̄ // BG(k).

It can be prove that this derived moduli problem is representable by a simplicial ring Rρ̄
PF [1/S], and its

π0 is the classical Galois deformation ring. There are variants of this construction, such as local derived
deformation functor and crystalline deformation functor, see [?] for more details.

Let G be a reductive group over a local filed K, U ⊂ G be a compact open subgroup. Let A be a
commutative ring, we let A[G(K)/U ] = c − Ind

G(K)
U A denote the induced representation of the trivial

representation from U to G(K). The classical Hecke algebra for the pair (G(K), U) is

H(G(K), U : A) := HomG(K)(A[G(K)/U ], A[G(K)/U ]).

In [?], Venkatesh define the derived Hecke algebra to be

H(G(K), U ;A) := Ext∗G(K)(A[G(K)/U ], A[G(K)/U ]).

It satisfies certain good properties like the classical Hecke algebra.
These two construction give us evidence about homotopical version of Langland correspondence for

general reductive group G, but the derived Hecke algebra doesn’t comes from symmetry of derived objects
Question 3.3 Find certain derived objects whose symmetry can be described by derived Hecke algebra.

In recent paper [?] and [?], there are some construction of Hecke operation on topological modular
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forms. We hope to establish a general theory of Hecke algebra in the derived algebra geometry context.
In the geometric Langlands correspondence, the construction of Hecke stack is an important ingredient.
We want to find a reasonable construction of derived Hecke stack which is compatible for Hecke algebra
of topological modular forms.

4 Two-Dimensional Langlands Correspondences
We know that for a reductive group G, and a global field F , the arithmetic Langlands correspondence

predict an equivalence between the following two categories:

1. Representations of Gal(F̄ /F ), i.e., morphisms Gal(F̄ /F ) → LG;

2. Automorphism representations of G(AF ).

For G = GL1, this correspondence is actually the global class filed theory. It is realized by the global
Artin reciprocity map

ΨL/K : CK → Gal(L/K)ab,

here L/K is a finite global field extension. The local Langlands correspondence for GL1 is just local class
filed theory. It is realized by the local Artin reciprocity map:

ΨL/K : K∗ → Gal(L/K)ab,

here L/K is a finite local field extension.
The geometric Langlands correspondence actually aim to construct an equivalence of categories

D(QCoh(LocSysLG(X)) ' D(D(BunG)),

from the derived category of quasi-coherent sheaves on LG(X) local systems on X and the derived
categories of D-modules on the moduli stack of G-bundles over X [BD91]. Due to the work of Fargues-
Scholze [FS21], the arithmetic local Langlands correspondence can also be some kinds of geometric
Langlands correspondence, but in the perfectoid world.

Classes field theory has a generalization for higher dimensional local field.
Definition 4.1 A 0-dimensional local field is a finite field. For n ≥ 1, a n-dimensional local field is a field
which is complete with respect to a discrete valuation and whose residue field is an (n− 1)-dimensional
local field.

Theorem 4.2. ([Kat77]) If K is a n-dimensional local field, then there exists a natural reciprocity map

KM
n (k) → Gal(K̄/K)ab

and for any finite Galois extension l/k, the reciprocity map induces an isomorphism

KM
n (k)/Norml/k(K

M
n (l)) → Gal(K̄/K)ab,

where KM
n (k) is the Milnor K-groups of k.

Theorem 4.3. ([KS86]) Let X̄ be a normal connected scheme, projective and of finite type over Spec(Z)
and let X ⊆ X̄ be a non-empty open regular subscheme. Let d = dim(X) and assume (for simplicity)
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that X(R) = ∅. Then there exists a natural reciprocity map

rec : lim
←−

I⊂X̄,I|X=OX

Hd
c.d.(X̄,KM

d (OX̄ , I)) → πab
1 (X)

If X is flat over Z, then rec is an isomorphism. If X is a variety over a finite field, then rec is injective
and coker(rec) ∼= Ẑ/Z.

And there are other descriptions such as relations of Chow groups and abelian étale fundamental
groups. Let X be a regular, connected and projective scheme over Z . Assume (for simplicity) that
X(R) = ∅ . Then there is a reciprocity map

rec : CH0(X) → πab
1 (X).

We know that Langlands correspondence is a generalization of class filed theory to general reductive
groups. As we have higher class field theory, it is natural to consider higher Langlands correspondence.
For a smooth projective curves X, the classical Langlands correspondence predicts for a morphism

π1(X) → LG,

there is a function on
G(F ) \G(AF )/G(OF )

where F is the function filed of X, and OF =
∏

x∈X OX,x. But this double coset is equivalent to the set
of isomorphism classes of G-bundles on X.

Let us consider the two dimensional case, assume S is an arithmetic scheme. We then have the
function filed FS , and we can construct two dimensional adeles AS [Fes08].
Question 4.4 What are 2-dimensional analogs of G(F )\G(AF )/G(OF ) and BunG in the 2 dimensional
Langlands correspondence.

By the higher class filed theory, we can’t directly replace the adeles of curves by adeles of surfaces.
We can’t consider the algebraic stack BunG directly. For an algebraic curve X, the moduli stack BunG

of G-torsors is a algebraic stack. We need to find a suitable moduli stack to describe the compactible
G-adeles on the arithmetic scheme S.
Question 4.5 What are the analogs of automorphic functions in 2-dimensional Langlands correspon-
dence?

The 1-dimensional Langlands correspondence predicts certain automorphic representations of G(AA).
It’s natural to consider automorphic functions in 2-dimensional Langlands correspondence. Similar to
2-dimensional case, we can also consider the Hecke action.
Question 4.6 Find the corresponding L-function analogues in 2-dimensional Langlands correspondence.

The 1-dimensional Langlands correspondence also predicts that certain L-functions are related. So
we can consider its two dimensional analogues. But to do this, we need to complete the theory of zeta
integrals on 2-dimensional adeles, see more details on [Fes08]. And we need the representation theory of
reductive groups on automorphic functions of 2-dimensional objects.
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