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Stable homotopy category

Brown representability theorem :
Generalized cohomology theories of Top «+— Spectra

Stable homotopy category (closed symmetric monoidal category)
Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra
Modern approach: co-category of spectra, Sp

E8 ring spectra: Alg(Sp)
ma E, -ring spectra: CAlg(Sp)
ma H,,-ring spectra : CAlg(ho(Sp))
Waldhausen’s version of braver new algebra of abelian groups: The category Sp of
spectra should be thought of as a homotopical enrichment of the derived category Dy, A
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Local-to-global principle

The Hasse square is a pullback square

2——=11,Zp

|

Q——=Q&p[1,Zp

This is the special case of a local-to-global principle for any chain complex M € D7,

ff 11, M}

2

which is a homotopy pullback square, where le denote the derived p-completion
(p-local and Ext(Q, My) =0,fori=0,1) ’
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The Category Dy,

Dq: The derived category of Q-vector spaces.
(DZ) : The category of derived p-complete complexes of abelian groups.

ma (Dyz), is compactly generated by Z/p, any object X € (Dz)y, is trivial if and only
if X ® Z/p s trivial.

5@ The only proper localizing subcategory (triangulated subcategory closed under
shifts and colimits) of(DZ) is (0).

g3 Any object M € Dz can be reassembled from its derived p-completions
» € (Dz),, its rationalization Q x M € D, together with the gluing
information specified in the pullback square on last page.

{Qand F, for p prime} «+ {Dg and (Dz)), for p prime}

2
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Examples of tensor-triangulated categories

1.
. The derived category D(R) of a commutative ring R.

(62 B N S \S)

The category of spectra.

. The co-category Modr of modules over an E-ring spectrum R.
. The quasi-coherent shaves complexes over a scheme (algebraic stack).
. Fun(K,C) when K is a co-category and C is a tensor-triangulated category . If

K = BG, then this functor category are those objects in C with a G-action.

. Derived category of geometric motives DMg,,(S) C DM(S) constructed by

Voevodsky.

7. SH?,;(S) c s (S) of the stable A! homotopy theory.
8. Homotopy category of Fukaya category Fuk(X) of a Calabi-Yau manifold X

10.

11

(symmetric tensor is induced by its mirror).

b _ . .
. kG — stmod = kG=mod o~ D (KG—mod) ;) ) qylar representation theory, for G a

kG—proj Drerf (kG)
finite group. A
Tensor-triangulated category of non-commutative motives by Kontsevich.

. G-equivariant KK-theory (or its stabilization E-theory) of C*-algebras in Alain

) .
Connes’s non-commutative geometry. J(



Tensor-triangulated category

Definition %

A tensor-triangulated category, is a triangulated category K together with a sym-
metric monoidal category structure

QLXK =K

E which is exact in each variable.

@ A thick subcategory J C K is a triangular subcategory closed under direct
summands: if X Y € J,then X, Y € J.

ga 7 C Kisatensor-triangular ideal if C ® J C J.

Definition

A prime P C K is a proper tensor-triangular ideal such that X ® Y € P implies A
XePorYcP.

S



Balmer's Spectrum

Definition @

For K a tensor-triangular category, we define
Spc(K) = {P C K|Pis prime},

%L-L.L Supp(X) = {P € Spc(K)|X ¢ P}.

The Supp has the following properties:
1. Supp(0) = 0 and Supp(I) = Spc(K).
2. Supp(a & b) = Supp(a) U Supp(b), for every a, b € K
3. Supp(Xa) = Supp(a) for every a € K.
4. Supp(c) C Supp(a) U Supp(b) for every distinguished triangle a — b — ¢ — Xa.
5. Supp(a ® b) = Supp(a) N Supp(b) forevery a, b € K. A

We define a topology on Spc(K) : {Supp(X)} xex as a basis of closed subsets. ’
J(



Ideal-Thomason Subset

Definition

For every subset V C Spc(K), we can associate a tensor-triangular ideal

Kv = {X € K|Supp(X) C V}.

A subset V C Spc(K) is called a Thomason subset if it is the union of the
complements of a collection of quasi-compact open subsets V = U, V,, where each V,
is closed with quasi-compact complement.

Theorem

The assignment V' — Ky defines a order-preserving bijection between the
Thomason subsets V' C Spc(K) and the tensor-triangular ideal.




Examples: stable homotopy category

Thereisamap ¢ : S° — 7<(S° ~ HZ,
Sp ~ Modg (Sp) RN Modpz(Sp) ~ Dz

Spc(Dz) Spe(%) Spc(Sp) - Spec(Z)

Question: What is the inverse image of the irreducible building block (DZ);} ? Answer:
There are infinitely many blocks in Sp between (0) and (Dz)),

2
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The Balmer’s Spectrum of classical stable homotopy category (Hopkins-Smith
,1988-1996) is the following topological space.

P2,oo P3,oo e P?),oo te

P2, nt1 P3,nt1 N Ppnt1---

Poon Ps.n P -

P Ps. . Ppa-
Po,1

8 Po,; = ker(SH — SH® == D"(Q)), Pn.oo = ker(SH® — SH,)).

&8 P, , = ker(SH® — SH(,) — F,[vi!,] — grmod) of localization at p and (n-1)

Morava K-theory K}, ;1.

J(



&8 The higher point belongs to the closure of the lower one.

Ea A closed subset i s either empty, or the whole Spc(SH*), or a finite union of closed
points {Pp, . } and of columns

{Pp.my} = {Ppulmp < n < oo}

J(



Examples

Theorem(Thomason, 1997) E

Let X be a quasi-compact and quasi-separated scheme. Then there is a homeo-
morphism of topological space

X| = Spc(DP (X))

x — P(X)
aﬂﬂwhere P(x) = {Y € DP?T(X)| Yy = 0}

Corollary -IEE

Let A be a commutative ring, K’(A — proj) = DPY(A). Then we have

aﬂ, Spec(K?(A — proj)) = Spec(A). A
J(J




Examples

Theorem (Benson-Carlson-Richard, 1997) %

Let G be a finite group, then there is a homeomorphism

&LL Spc(kG — stmod) = Proj(H*(G, k)).

Theorem (Balmer-Sanders, 2017) %

Let G be a finite group. Then every tensor triangular prime in SH(G)¢ is of the
form P(H, p, n) for a unique subgroup H C G up to conjugation, where

P(Hv p; n) = ((I)H)_l(PPJl)

is the preimage under geometric H-fixed points ® : SH(G)¢ — SH®.
E If K < H is anormal subgroup of index p > 0, then P(K, p,n+ 1) C P(H, p, n).
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Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, Cg denote the
category of local Noetherian R-algebras. We define

AY(A) = Ca(R([1]], 4)
A commutative one-dimensional formal group over R is a functor
G:Cpr— Ab
which is isomorphic to A®.

O¢ = Ogx6 = 06 ® Og
Ogisjust R[X] and Og ® Ogis R[X] ®r R[Y] = R[X, Y].

¢: R[X] — R[X,Y] 2

X = f(X,Y) is
J(



Formal Group Laws

Definition
Formal group law : F € R[x1, x2]
ma F(x,0) = F(0,x) = x (Identity)
B8 F(x,X2) = F(x2, x1) (Commutativity)
&I‘. Ea F(F(x1,x2),x3) = F(x1, F(x2, x3)) (Associativity)

There exists a ring L and Fyp;y(x,y) € L[x, y]

{Formal Group Law over R} <— {L — R}

such that F(x, y) € R[x, y] over R,

I (Funiv(x,y)) = F(x,¥).

Lazard's Theorem

L=7Zt, b, -]




Heights of Formal Groups

Let f(x,y) € R[x,]
1. If n = O,we set [n](t) = 0.
2.1f n> 0,weset [n](t) = f([n — 1](¢), 1).
P-series p[t] is either 0 or equals A\t”" + O(¢”"*+1) for some n > 0.

Definition

Let v, denote th coefficient of t”" in the p-series, f has height < nif v; = 0 fro
i < n, fhas height exactly n if it has height < n and v, is invertible.

Examples

& Formal multiplicative group f(x,y) = x+y+xy, [n|(t) =1+ )" - 1.Ifp=0
inR, then [p](t) = (1 + t)” — 1 = t”, so fhas height 1.

ma Formal additive group f(x,y) = x + y, if p = 0in R. Then [p](¢) = 0, so f has A

infinite height. ’
J(



Complex Oriented Cohomology Theories

Definition (Complex Orientation)

Let E be cohomology theory. Then a complex orientation of E is a choice x €
E%(CP*>) which restricts to 1 under the composite

E%(CP>) — E*(CP') = E*(S%) = E%()

E*(CP>) = E*()[f] = (mE)[[1]]
(mE)[[e] = E*(CP*) — E*(CPY x CP) = (m.E)][x, y]]
{complex oriented cohomology theoryE} — Fromal GroupsGg = SpfE"(CP>).
E — G = SpfE’(CP™).

Theorem (Quillen, 1969)

MU is the universal complex oriented cohomology theory, L = 7,MU. For E
complex oriented, MU — E, induce L = m,.MU — 7.E.




The Landweber Exact Functor Theorem

If we already have a ring map L — R, can we construct a complex oriented
cohomology theory E such that R = 7, E?

E,(X) = MU.(X) ®r.mu R= MU.(X) ® R

Landweber's Exact Functor Theorem, 1976

Let M be a module over the Lazard ring L. Then M is flat over M gg if and only
if for every prime number p, the elements vy = p, vy, 12, --- € Lform a regular
sequence for M




Lubin-Tate Theory

Deformation of formal groups: Let Gy be a formal group over a perfect field k with
characteristic p, then a deformation of Gy to Ris a triple (G, i, V) satisfying

1. Gis a formal group over R,
2. Thereisamapi: k — R/m,

3. There is an isomorphism ¥ : 7%G = i* G of formal groups over R/ m.

Lubin-Tate's Theorem, 1966

There is a universal formal group G over Rir = W(k)[[v1,--- , v, — 1]] in the
following sense: for every infinitesimal thickening A of k, there is a bijection

&LL Hom i (Rrr, A) — Def(A).




Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

mE(n) = W(K)[vy, -, va—1][6*]

Theorem (Goerss-Hopkins-Miller)

The spectrum E(n) admits a unique E,,-ring structure.

M(k) denote the cofiber of the map >"2 M Up) — MU, given by the multiplication
by .
Let K(n) denote the smash product

MU [, ] @au,, @) M(K).
k#p"—1

This spectrum K(n) is called Morava K-theory. The homotopy groups of K(n) is A

Fp[vrjzd] J
o

I

mK(n) = (m.MU ) v, ']/ (to, 1, -+ tpn_a, Tpn, -+ +)



Properties of Morava K-theories

B A commutative evenly graded ring is a graded field every nonzero homogeneous
element is invertible. Equivalently, R is a field or R ~ k[3F].

&= We say a homotopy associative ring spectrum is a field if 7, E is a graded filed.

Example ﬂﬁ

&L‘For every prime p and every integer n, K(n) is a field.

Proposition %

ma IfEis an field such that E ® K(n) is nonzero, then E admits a structure of
K(n)-module.

=3 Let E be complex-oriented ring spectrum of height n and 7. E ~ Fp[v,jfl].

&LL Then E ~ K(n).
J(J




Localization

Let S be a set of prime numbers, for example S = (p) .
E= A ring R is S-local, if all prime numbers not in S is invertible in R.
=8 A group G is said to be S-local if the p” power map G — G is a bijection for p ¢ S.

mE If Gis abelian,

1. Gis S-local;
2. G admits a structure of Zg-module (necessarily unique);

Definition

A spectrum X is called S-local if its homotopy groups are S-local abelian groups.

The S-localization can be constructed as the Bousfield localization of spectra with
respect to the Moore spectrum M(Zs) A

J(



Localization

The general idea of localization at a spectrum E is to associate to any spectrum X the
“part of X that E can see” , denoted by LgX. Lg is a functor with the following
equivalent properties:

BE EAX >~ %= LpX ~ *.
gE If X — Y induces an equivalence EA X — E A Y then LgX — LgY.

J(



Bousfield Localization

Let C be a full subcategory of Sp, which is closed under shifts and homotopy colimits,
and can be generated by small subcategory under homotopy colimits.
If X is a spectrum, define G(X) to be the homotopy colimit of all Y € C with a map to

X.
We have a counit map v : G(X) — X, and we let L(X) denote the cofiber of v, then we

have a cofiber sequence
G(X) — X — L(X).

A spectrum is C-local if every may ¥ — X is nullhomotopic when Y € C. We denote
the category of C-local spectra as C*

2
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Bousfield localization 1'1%%

Let Gg the collection of E-acyclic spectra. We say that a spectrum is E-local if
every map for every Y € Gg, the map Y — X is nullhomotopic.
We have a cofiber sequence

where Gg(X) is E acyclic and Lg(X) is E-local. This functor is called Bousfield
localization with respect to E.
The map X — Lg(X) is characterized up to equivalence by two properties.

1. The spectrum Lg(X) is E-local.
E 2. The map X — Lg(X) is an E-equivalence.

Theorem ﬂ]ﬁ

A spectrum X is E-local if and only if for each E-equivalence S — T, the induced
E map [T, X] — [S, X] is an isomorphism.

S



Moore Spectrum

For G an abelian group, then the Moore spectrum MG of G is the spectrum
characterized by having the following homotopy groups:

1. m1<oMG = 0;

2. m0(MG) = G;

3. H~o(MG, Z) = n159(MG AN HZ) = 0.
A basic special case of E-Bousfield localization of spectra is given by E = MA the
Moore spectrum of an abelian group A.

1. For A = Z, this is p-localization.

2. For A = F,,, this is p-completion

3. For A = Q, this is the rationalization .

J(



Examples of Localization

Theorem ﬂ]ﬁ

p-Localization is a smashing localization:

LMZ(p)X ~ MZ(p) NX

E We denote this as LMZ(p)X ~ Xp) which is called the Bousfield p-localization

A spectrum E is p-complete, if 7. E is a (p)-adic complete ring. Bousfield localization
at the Moore spectrum MF,, is p-completion to p-adic homotopy theory.

Theorem @

The localization of spectra at the Moore spectrum MF)is given by the mapping
spectrum out of QMZ/ p°:

Lp = LMF,,X ~ [QMZ/]OOO,X]

E where Z/p> = Z[1/p]/Z. We denote this spectrum L, = Ly, X as X




Examples of Localization

Theorem ﬂﬁ

LugX = X A LgS" = X A MQ = X A HQ is smashing, we call this as the
&Irrationalization of X, denote it as Lo X.

Examples qﬁ

Localization with respect to E(n) and K(n).

=8 Lg(,), behaves like restriction to the open substack
M?g C Mg x SpecZp).
B8 Ly (), behaves like completion along the locally closed substack

%‘. MIIZ"G C Mpgg X SpecZ(p). A

-




Localization with respect to E(n) and K(n)

Lemma

The Spectrum E(n) is Bounsfield equivalent to E(n) x K (n). Here E(0) = HQ[3F]
which is Bounsfield equivalent to HQ.

So a spectrum is E(n)-acyclic if and only if it is both E(n)-acyclic and K (n)-acyclic.

L(ny(X) = Lioyvk(1)-k(n)(X)-
There is pullback square

Le(n-1)X — L(n-1)(Li(mX) 2

This come from Lg(,,_1)X is K(n)-acyclic and the following Lemma ’
Ll



Lemma

LpypX

|

Let E, E X be spectrawith E,LrX = 0. Then there is a homotopy pullback square.

LeX

|

E LFX —_— LF(LEX)

R

So we have the following Suillivan arithmetic square for E = \/ , M(Z/p), F = HQ

X——[,LX

L

LoX — Lo(II, LpX)

In chromatic homotopy, we often cares the Bousfield localization with respect to the

Morava E-theories and Morava K-theories.

S



Nilpotence

We say that a collection of ring spectra { E*} detect nilpotence if for any p-local ring
spectra R, x € m,,R is send to zero in E§'R for all o, then x is nilpotent in 7, R.

Nilpotence Theorem (Devinatz-Hopkins-Smith, 1988) %

For any ring spectrum R, the kernel of the map 7,.R — MU,R consists of nilpo-
E tent elements. In particular, the single MU detects nilpotence.

Theorem ilﬁ

E The spectra {K(n) }o<n<co detect nilpotence.

Let E be a nonzero p-local ring spectrum, then E ® K(n) is nonzero for some
0 < n < 0. If not, every element of 7 E is nilpotent, so I € myE is nilpotent, so that A
E~0.

S



Thick Subcategories

Let C be a full subcategory of finite p-local spectra. We say that C is thick if it contains
0, closed under fiber and cofibers, and every retract of a spectrum belong to C also
belongs to C.

Lemma

Let X be a finite p-local spectrum, if K(n).(X) ~ 0 for some n > 0. Then K(n —
1)«(X) = 0.

We say that a p-local finite spectrum has type n if K(n).(X) # 0 and K(m).(X) = 0 for
m < n.Xhas type 0 if H,(X,Q) ~ 0.
We let C>, be the category of p-local spectra which has type > n.

Thick Subcategory Theorem

Let 7 be a thick subcategory of finite p-local spectra. Then 7 = C>, for some A
0<n<o.

S



Different Localizations
We have an adjunction
inclusion : Gg = {E — acyclic} < Sp : Gg
Localization with respect to E means localization with respect to Gg.
Gg < Sp e, B local = (GE)l

GE(X) — X — LE(X)

We know E(n) acyclic means E(n — 1) acyclic and K (n)-acyclic, but
ker Ly = Gg = {E(n) — acyclic}, so we get inclusions

0 = ker(id) C ker(Lg(oo)) - - C ker(Lg(yy) C ker(Lg(,—1) - - - ker(Lg(p)) C Sp

by taking orthocomplement, we get A

0 C E(1)-local Sp C --- C E(n— 1)-local Sp C E(n)-local Sp C - - - a
J(



Different Localization
We have K(n).(X) =0= K(n—1).(X) =0.

C>n = {X € Sp(,)|X hastype > n,i.e.,K(m).X =0,m < n}
So we have sequence
(0) (@O CCZn+1 CCZnC CCEOZSP

by taking orthocomplement, we get

C>p local spectra C --- C C>p local spectra C C> ;41 local spectra C - - -

Telescope Localization

The telescope localization L!: Localization with respect to C> 1.

C(X) — X — LL(X).

E where C(X) is a filtered colimit of object in C> 41




Different Localizations

Definition

We say a localization functor L is a smash localization if L(X) = K A X fora K.

The following conditions are equivalent
1. L preserves homotopy colimits.
2. Ct c Spis stable under homotopy colimits
3. G preserves homotopy colimits.
4. L(X)=KAX.

Examples

B8 Lp () is a smash localization.
& L) is a smash localization.
@8 Rationalization and p-localization is a smash localization.




For any smashing localization L
ker(L;,) C ker(L) C ker(Lg(y))

So there is a comparison
Ly — L — Ly

Telescope Conjecture

LZ >~ LE(n)




The periodicity theorem: find a type n spectrum

Consider the cofiber sequence

skx Lo x = x/f

If we have X has type < n, we hope X/f hastype < n+1

Definition @

Let X be finite p-local spectrum, a v, self map isamap f : 39X — X and satisfy-
ing the following,

1. finduces an isomorphism K(n).(X) — K(n).X.
E 2. The induced map K(m).(X) — K(m).(X) is nilpotent, for m # n.

Theorem @
E Let X be a finite p-local spectrum of type > n, then X admits a v,,-self map. A
J(J




Telescopic Localization

f

x Ly skx) L m2kx) L

Let X[f~!] denote the colimit of this sequence.

N

Proposition

1.If X € C>p, then LL(X) ~ X[f71].

2. There is a fiber sequence

lim S77X/ (00, ) = X = Ly(X).

k(b'" 7kn




Monochromatic

Let Ly(X) = Lg(»)(X), then we have the following chromatic tower.

My (X) M;(X) M (X) My(X) = HQA X

l . i

= Ly(X) —— - —— LX) — L(X) —= Ly(X) = HQA X
where the monochromatic layers M, (X) are defined by the fiber sequence.
My (X) = Ly(X) = Lp—1(X)

The following is the chromatic convergence theorem proved by Hopkins- Ravenel.

Chromatic Convergence Theorem

Then Canonical Map X — lim, L,X is an equivalence for a p local finite spec- A

trum X.
J(J




Definition

Monochromatic A spectrum X is monochromatic of height n if it is E(n)-local
and E(n — 1)- acyclic.

We let M, denote the category of all spectra which are monochromatic of height n.

Theorem ilﬁ

There is a equivalence of category between the homotopy category of
monochromatic spectra of height n and the homotopy category of K(n)-local
spectra, which is given by the functor

E Li(ny : Myu = K(n) local spectra : M,

S



K(n)-Local Spectra

1. Spg () is compactly generated by Lg(n)F, for any type n spectrum E an object
X € Spg(p) Is trivial if an donly X A K(n) is trivial.
2. The only proper localizing subcategory of Spgy, is (0).

3. Aspectrum X € Spg,) can be reassembled form Ly, X, Lg(,—1)X, together with
the gluing information.

LgnX Ly X

| l

Lg(n-1)X — Lg(n—1)(Lx(n)X)

The chromatic approach to 7, S?p):

1. Compute . Ly, S" for each n. A

2. Understanding the gluing of above square.
3. Using chromatic convergence lim, 7. Lg(,) S0, Sip) ’
J(
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How do we detect topological structure from algebraic information?
g3 E, module structure with symmetry = Fixed point spectral sequence.

ma (E,, E.E) module structure =—> Adams spectral sequence

J(



Morava Stabilizer Groups

We let Gy denote a formal group of height n over a perfect field k/IF,
The small Morava stabilizer group Aut(Gp) is the group of automorphism of Gy with
coefficients in k,

Aut(Go) = {f(x) € k[[x] : f(Go(X, Y)) = Go(f(x),f(¥)),f'(0) # O}

Since Gy is defined over k, the Galois group Gal = Gal(k/F,) act on Gy by acting on
the coefficients.

i d

The Morava stabilizer group G, is defined by

Gy = Gal(k/F,) x Aut(Gy)

Dians

I



Morava Stabilizer Groups

(Go, k) —> Morava E-theoryE(Gy, k)
Does the action G, lifts to E(Gy, k) ?

Theorem (Devinatz-Hopkins, Goerss-Hopkins-Miller) "'Iﬁ
The Morava stabilizer group acts on E,, and it givens essential all automor-
phisms of E(n)
&L‘ E(n)hG” ~ LK(n)SO
Example -r%
EI.I.When p is odd and n=1, Lg(y)(S) is the spectrum fﬁwkl A

-



Homotopy fixed point spectral sequence

If we E, module structure with an action of Morava stabilizer group G, how can we
get LK(n) 502

Spk(ny — { Morava Modules : E, module structure with action of G, }

Proposition @

There is a homotopy fixed point spectral sequence (descent spectral sequence)

Ey' = HS,(G;mi(X)) = T s(X"6)

E similarly for Xj,, X*C.

We have E(n)"C» ~ Li(n) SY, so

Ey' = H} (G, E(n);) = m—sL(n)S°
J(J



The structure of Morava stabilizer group

For f a formal group law over Fp.

Endf = {g(z) e R[] | f(g(x),8(y)) = &f(x,y)}

Proposition

End(f) is a noncommutative local ring: The collection non-invertible elements
is the left ideal generated by 7(t) = v(t”), where vfP(x,y) = f(v(x),v(y)).

Let D = Q ® End(f).

Lemma

D is a central division algebra over Q,. And End(f) = {x € D : v(x) > 0}.




Morava Stabilizer Group

det: G, — Z, det:S, —=Z,
Composition with Z,; /1 = Z,.
Cn: Gy — Zp.
Let G, = ker (,,, we have

G2 GLxZy Sp=S)xZp.

As a consequence of G, /G}, x Z,, there is a equivalence Li(n) S0 ~

1 oah— 1
LK(n)SO — EZG" u E,I;G" £> ELK(n)SO.

(

hG}
E; "

)th.

2
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The action of Morava stabilizer group

Let F,, be the universal deformation over (E,)o of Gy. If we have o = (f, o) € G,,. The
universal property of F,, implies that there is ring isomorphism « : (E,)o — (En)o
and an isomorphism of formal group laws f;, : a.F,; — Fy.

And the action can extends to (Ey)« = W, [uy, - -+, up_1][ut!]

1.a = (id, o) for o € Gal(k/F,). Then the action is action of Galois group on W,.

2.1fw € S, is a primitive (p" — 1)-th root of the unity, then w, (1;) = w” 'y, and
wy(u) = wu.

3.V € Z; C Sy is thee center, then ¥ (u;) = uj and You = Yu.

Theorem (Devinatz-Hopkins) @
letl < i< n-—1landf = Z'ZOI € Sy, where f; € W,. Then modulo

j
(pur, - up-1)?,

n—1
fi(u) Ebe‘f‘ngijuuj L (uw) Zf, ]uu,+ Z vl +l ju
E j=1 Jj=i+1




Stable Homotopy Groups of Sphere

Lemma

The K(1)-local sphere Li(1)S is given by the homotopy fiber of the map W& — 1 :

KU — KU.
—— P81
7T2n(KU ) ~ 0
—PE_1

’7['2n_1(KU )’;—’Zp/(gn—l).

By this theorem, we can compute the homotopy group of Li(1)S

Z n=0
B Qp/Zyp n=—2
Tnlg1)S = Z/IpZ n+1=(p-1)p*mptm A

0 otherwise
J(J



Let im(J), denote the image of the composition map
Tn(0) = mp(S) — Wn(S(p))

The relation of image of J and the Lk (1)) S is described as

Theorem ilq:%

For n > 0, the Bousfield Localization at E(1), Sy = Le)$S induces an isomor-
phism

im(J)n = mn(Lg1)S)
E In particular, 7,8, — mnLg(1)S is surjective.

By this theorem and the computation of Lg(1))S, we can get

— P81

Ton(KU) = mon_1(U) L mon_1(S) = mon1 (KU )

is surjective, and for n > 0, A

k+1 _ B k
imtrfy = 20 T



Adams Spectral Sequence

There is an equivalence
D(R) = MOdHR(Sp)

Homology forget the A,-module structure.

graded
Mod A,

lforget
Spop e - Mod%raded
H*(=Fp) P

Ey' = Extf;(; (H'Y, H'X) = [X, Y] i—s

1.E' = Extfg‘;(Fp,IFp) = m.(S), A

o



E based Admas spectral sequence ﬂﬁ
There exists a cohomological spectral sequence E;"* such that

Ey' = Extp!l (E'Y,E*X) = [X, XY

where [X,X7°Y]g is the set of stable homotopy class form X to Y in an E-

E localization.




Power Operations

Suppose C is a tensor triangulated category (presentable stable symmetric momoidal
oo category), then the functor

7o : CAlg(C) — Set, R — moMap (L, R)

is represented by the free commutative algebra on a copy of the unit, I{¢}.
We can define the power operation on myR which is given by the elements of

Woﬂ{t} = Tp @H%ES = @HhES .

Definition

To each object P € moll;,5,, we define the power operation of weight r by sending
aclass x € moR = [L, R] to be the composite

I i) ]IhZ, — @sHhEs = ]I{l’} w} R. A




Power Operations

If E is a structured commutative ring spectra(ie, a commutative S-algebra), we have
have a map E*(X) — E*(X™) given by x — x*™ ,then there is total m-th power

operation
P E°(X) — E°(X x BY,)

If h* is a multiplicative cohomology theory, that is, we have map:
hP(X) ® h9(X) — hPT9(X). Then we have the m-th power map

h9(X) — W™(X): x> x™.

Let R be a commutative S-algebra in the context of EKMM category, and M is an
R-module, then we can define a free commutative R-algebra on M:

PrM = \/ PR(M) 2 \/ (M Ag-- Ar M) jsm

m>0 m>0
And if A is commutative R-algebra A, then we have a map A
o PRA — A.

J(



If A is a commutative R -algebra.
1. We can chooseaa : R — PJ(R) 2 RA BX™
2. For any element x € mgA which is represented by f; : R — A.

3. We define a element Q,(x) € moA which is represented by the following
composite
P (fy
R -5 PR(R) %) pr(a)  Pr(a) 25 A

So we have define amap Q,, : mpA — moA. And we can also define Q, : m4A — 74 Aif

o S9TR 5 PR(SIR) = R A BSH ™.

J(



Example of Power Operations

Let H = HF5 is the mod 2 Maclane spectrum, if A is a commutative H-algebra
spectrum, then 7, A is a graded commutative Fs-algebra. Q" : m43A — 744 ,A

ma Q'(x+y) = Q"(x) + Q"(y)
ma Q" (xy) = Y Q(x)Q " (y).
B8 Q'Q(x) = d]sQ’Q’(x) if r > 25, where i < 2j.

if A= Fun(X*°X, HF3) , then the power operations are Steenrod operations on

&L‘H*(X,Fg).

Power Operations in K-theory -IEE
If K is the complex K-theory spectrum, and A is a p-complete K-algebra. 3" :
ToA — moA.
ma P (x+y) = PP(x) + ¢P(y).
ma )P (x) = xP mod p.

E:TI..- @ ) (xy) = Y(x)(y)-




Power Operation in Morava E-theories

Theorem (Rezk) ilﬁ

There exists a monad T on the category of discrete Ey-modules whose categroy
of algebras Algy is the image of the functor my(—) on commutative E-algebras.

Algp

-
T

Ur

CAlg) —™- CRingy,

In the case n = 1and E = E(F,, G,,) = KU,. Algy can be identified with the category
CRings-rings. If Ris a T(1)-local commutative KU, algebra, then there is a operation
0 : mp(R) — mo(R) which act as a p-derivation

P(x) = xP + pé(x) A

o



For formal reasons, the forgetful functor Ur : Algy — CRingg, admits both left and
right adjoint

Ut : Algy = CRingg, : Wr
Fr : CRingg, = Algy : Ur

In the case of Alg = CRingj; at height 1, we have Wr(A) = W(A) = moE(A). By
composing with the adjunction

(—/p)* : CRing = Perfy, : Incl
We obtain an adjunction
(U(=)/p)* - CRing; = Perfy, : moE(—)

This adjunction can be generalize to any height.

Theorem (Burklund-Schlank-Yuan, 2022)

There is an adjunction

(U(=)/m)* : Algy = Perfy : moE(—)

E where the right adjoint mo E(—) is fully faithful.




Theorem (Rezk)

Let A be aK(n)-local E-Algebra, then the power operation of the homotopy group
of A has the structure of an amplified I'-ring.

We say that a graded I"-algebra B satisfies thee congruence condition if for all x € By,

xo = xPmodpB.

Theorem

An object B € Algr. which is p-torsion free, then B admits the structure of a T-
algebra if and only B satisfies the congruence condition.




Sheaves on the Categories of Deformations

Let R be complete local ring whose residue has characteristic p. Let ¢ : R — R, x — xP
be the Frobenius map.

i d

The Frobenius isogeny Frob : G — ¢*G is induced by the relative Frobenius
map on rings.

We write Frob” : G — (¢")*G which is the composition ¢*(Frob’!) o Frob

pmn

¥



Let (G, i,«) and (G, /) be two deformation of Gy to R. A deformation of Frob” is a
homomorphism f : G — G’ of fromal groups over R which satisfying

l.io¢" =i andi*(¢")* Gy = (i')*Gy.

k—i/>R/m

%

K

2. the square
i*(Frob))

l'*G0*>l (Qbr)*G[)

\L * (f) i

™G ———1*G

of homomorphisms of formal groups over R/ m commutes.

J(



We let Defr denote the category whose objects are deformations fo Gy to R, and whose
morphisms are homomorphsim which are deformation of Frob” for some r > 0. Say
that a morphism in Defy has height r, if it is a deformation of Frob”.

Proposition

Let G be deformation of Gy to R, then the assignment f — Kerf is a one-to-one
correspondence between the morphisms in Suby, with source G and the finite
subgroup of G which have rank p’.

For the following, Let Gz = Gyuiy/ Ep be the universal deformation of Gy.

J(



Deformation of Frobenius
Theorem (Strickland, 97) ilﬁ

Let Gy/ k be a formal group of height h over a perfect field k. For each r > 0, there
exists a complete local ring Ar which carries a universal height r morphism ;] . :
(Gs, is,5) — (G, ir, ) € Sub"(Ar). That is the operation f . — g*(fl..,)
define a bijective relation from the set of local homomorphism g : A, — Rto the

set Suby. Furthermore, we have:
1. AO ~ W(k)[[l/l, e, l/hfl]].
2. Under the map s : Ag — A; which classifiers the source of the universal
height r map, i.e. G; = i*Gg, and A, is finite and free as an Ay module.

3. Under the map ¢ : Ay — A, which classifies the target of the universal
E height r map, i.e. G, = t*Gg

So there is a bijection
{g:Ar — R} — Sub'(R)

8= & (fun)(&"Gs = 87Gr) Py



Thus, Sub = || Sub" is a affine graded-category scheme. In particular, there are ring
maps:
§$= Sk, t =ty : Ay — Ag,

which is induced by E° cohomology on BY, — *
p= mug;: Aepr s Aerr = A'®ay ' A

which classifying the source,target, and composite of morphisms.
Theorem (Strickiand, 1998) %

The ring A[r] in the universal deformation of Frobenuis is isomorphic to
E°(BY,r)/Lie,
Alr] = E°(BSy) /T

E where I is transfer ideal.

So for the power operation
R*(X) — R¥(X x BS,) A

For x = , we have moR — E°(BX,r) /I ® moR = A[r] ® moR. This make 7R become
['-module. Ll



Andre-Quillen Cohomology Groups

Let A be a commutative ring, B be an A-algebra, and M be a B-module. The
André-Quillen cohomology groups are the derived functors of the derivation functor
Dera(B, M).

Morphisms of commutative rings A — B — C and a C-module M, there is a
three-term exact sequence of derivation modules:

0 — Derg(C, M) — Dera(C, M) — Dera(B, M)

Let P be a simplicial cofibrant A-algebra resolution of B. André notates the qth

cohomology group of B over A with coefficients in M by HY(A, B, M), while Quillen

notates the same group as D?(B/A, M). The q-th André-Quillen cohomology group is:
DY(B/A, M) = HY(A, B, M) %" H9(Der,(P, M))

Let Ly, denote the relative cotangent complex of B over A. Then we have the

formulas: A
DY(B/A,M) = H9(Homp(Lg/a, M))

Dy(B/A, M) = H,,(LB/A ®p M) 0



In general , let C be an operad, A is an C -algebra, M is an Module. The square zero
extension M x Ais anew A -algebra
We have definitions of derivation

D-‘VC(Xv M) = AlgC/A(Xa M x A)
We can form the simplicial module K (M, n) over A whose normalization
NK(M, n) = M. And define K4y(M, n) = K(M, n) x A.
We define the Andre-Quillen Cohomology of X with coefficients in M by the formula

Dg‘(X7 M) = [X7 KA(Ma m)]sAlg/A = ﬂ-OMapsAlg/A(Xa KA(M7 I’l))

D¢(X, M) = m_nhomgp g a(X, KaM)

Lemma

De(X, M) = H'N(DIV (Y, M))

J(



where Y is some cofibrant model for X and N is some normalization functor from
comsimplicial k-module to cochain complex.

Let X — Y be a morphism of F-algebra in spectra. There is second quadrant spectral
sequence with E; term

ESY = Hompg, 7(E.X, Y*)

and
Ey' = D 1(E.X,Q'Y.)

converge to
7ths(1\/[apAlgF (X7 Y)’ d))

J(



Goerss-Hopkins Obstruction Theory

Goerss-Hopkins Obstruction Theory @

Let R and S be E -local E,-rings, and let A = E,R and B = E.S. Given a map
¢ A — Bofcommutative algebras in E, E -comodules, there exists an inductively
defined sequence of obstructions valued in

n+1l,n
EXtMOdA(ComOdE*E) (LA/E* ’ B)

E which vanishes iff there is an E.,-ring map % : R — Ssuch that E, (%) = .

o



Elliptic Cohomology

An elliptic cohomology consists of
B8 An even periodic spectrum E .
&= An elliptic curve C over mpE.
8 ¢: G C

We denote this data as (E, C, ¢)

Theorem(Goerss-Hopkins-Miller-Lurie) @

There is a sheaf Oy,r of E.-ring spectra over the stack My for the étale topol-
ogy. For any etale morphism f : Spec(R) — My, there is a natural structure of
elliptic spectrum (O (f), Cr, ¢), satistying moO e (f) = R, and Cy is a general-
&lized elliptic curve over R classified by f.

Tmf = Opnp(Mey — Mey), topological modular forms.

S



Topological Automorphic Forms

Theorem @

let M;’d denote the moduli stack of one dimensional height n p-divisible group,
then there is a sheaf of E,,-ring space, O on the etale site. such that for any

E := O"(SpecR > M%)

we have
Fg =G
E where Gy is the formal part of the p-divisible group G.

The main issue of this construction is that fro a general n-dimensional abelian variety,
their associated p-divisible group are not 1-dimensional.

PEL Shimura stacks are moduli stacks of abelian varieties with the extra structure of
Polarization, Endomorphisms, and Level structure . A class of PEL Shimura stacks
(associated to a rational form of the unitary group U(1, n1)) whose PEL data allow for

the extraction of a 1-dimensional p-divisible group satisfying the hypotheses of above
theorem. (



Orientations
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Obstructions to H,.,-maps

H..C (formal groups with descent data)

| |

homogeneous spectra C ——— (formal groups)

Theorem (Ando-Hopkins-Strickland, 2004) @
The rule which associates a level structure
l:A— i"G(R)

to a map ¢¥ : SpfR — Sg given by the ring map moE Dy moEP% — Rand the
isogeny

YE G G A

E is descent data for level structure on the formal group G over Sg. ’
J(




L is aline bundle over G. Given a subset I C {1,--- , k}, o7 : G¥ — G defined by
Ul(alv ey ak) = ZiEIai-
We define a line bundle over G by

o= @ (L)

Ic{1,....k}
And set ©°(L) = L.
0°(L)a = La
o' = £
O*(L)ap = %
Lo® L L L
O (Lape = ol e e 2

o



Definition @

A ©F structure on a line bundle £ over a group G is a trivialization s of the line
bundle ©%(L£) such that

1. For k > 0, sis arigid section.
2. sis symmetric,i.e., for each o € ¥y, we have ;7 s = s.

3. The section
s(ay, as,...)®@s(ap+ a1, as, ... )"t @s(ap, s + ag,...)@s(ap, ar,...) " '®

E corresponds to 1.

If g : MU (2k) — E is an orientation, then the composition

(CP®)*)Y = MU(2k) — E

represents a rigid section s of ©%(I5(0))

Theorem

For 0 < k < 3, the maps of ring spectra MU(2k) — E are in one to one corre-
spondence with ©*-structures on Z(0) over Gg.




Theorem (Ando-Hopkins-Strickland, 2004) @

Let g : MU(2k) — E be ahomotopy multiplicative map, s = sg be the section of
©%(15(0)) as before. If the map g is Hs,, then for each level structure

A— G,

the section s satisfy the identity

N 6/es = (W1)i*s
1

E And if k < 3, the converse is true.

Using this theorem, they proved the o orientation of an elliptic spectrum is an H,,
map. Zhu (2020) proved that the map MU (0) — E coming from a coordinate of

SpfEY(C) is a H,, map, since the map satisfying the condition above, which is called A
norm coherence.

S



Obstructions to E,,-maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E,,-ring spectra
S — MX; — MXy — MX3 — ---

such that the following hold:
1. lim MX,, - MU is an equivalence.
2. Mapg_ (MX;, E) ~ Or(E) for each E,,-ring E.

3. Given m > 0 and an E-ring E, there is a pull back square

1\/13'13}50C (MXm, E) — MapEoo (Mmelv E)

l |

{*} ———— Map, (F,, Pic(E))

where F,, is a certain pointed space.

J(



4. MX;,—1 — MX,, is arational equivalence if m > 1, a p-local equivalence if m is
not a power of p, and a K(n)-local equivalence if m > p”.

5. Let E denote an E,, such that . E is p-local and p-torsion free. Then an E,,-map
MX; — E extends to an E,, map MXp — E if and only if the corresponding
complex orientation of E satisfies the Ando criterion.

Theorem (Senger, 2022)

Let E denote a height < 2 Landweber exact E-ring whose homotopy groups is
concentrated in even degrees. Then any complex orientation MU — E which
satisfies the Ando criterion lifts uniquely up to homotopy to an E-ring map
MU — E.

J(



The proof of Senger’s theorem was based on E-cohomology of some certain spaces.
We have the following pullback square.

JI% I1, B
Ey —(I1, E))o

Mapy (MU, R) ~ Or(R) for a rational E,,-ring R, and
miMapg (MU, R) = m Or(R) = 0, if R is concentrated in even degrees.

moMapEe (MU, R) —— moMapg_ (MU, [T, Ep') mOr(E) ——— moOr([], ')
mOr(Ey) ————— mOr(([], £})o) mOr(Ey) — moOr((I1, £} )a) A

J(



It suffices to lift the induced complex orientation of E{,\.
Assume that E is p-complete. So we only need to prove

moMapg_ (MX,2, E) — moMapy,_ (MX), E)

is surjective.
There is a cofiber sequence.

Mapy, (MX,, E) — Mapg_ (MX,, E) — Map,(F)2, Pic(E))
and a equivalence
Mapg_ (Fn, Pic(E)) ~ Hom(X*° Fy,, pic(E)) ~ Hom (X Fy,, X E).

It suffices to show that
E'(S%F,2) ~ 0 A

J(



Lemma (Senger, 2022)

E?"(Fp) E2”+1(sz) >~ ().

Let L,, denote the nerve of the poset of proper direct sum decomposition of C™”, and
(Ly,)® is its unreduced suspension.

Fn 2 ((Ln)® A Szm)hU(m)-
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