Chromatic Homotopy Theory

Xuecai Ma

2022年11月24日

Tensor-Triangulated Geometry

Stable homotopy category

Brown representability theorem :

```
Generalized cohomology theories of \operatorname{Top} \longleftrightarrow Spectra
```

Stable homotopy category (closed symmetric monoidal category) Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra Modern approach: ∞ -category of spectra, Sp

- \blacksquare ring spectra: $\mathrm{Alg}(\mathrm{Sp})$
- **Go** E_{∞} -ring spectra : $\operatorname{CAlg}(\operatorname{Sp})$
- **GO** H_{∞} -ring spectra : CAlg(ho(Sp))

Waldhausen's version of *braver new algebra* of abelian groups: The category Sp of spectra should be thought of as a homotopical enrichment of the derived category $\mathcal{D}_{\mathbb{Z}}$

Local-to-global principle

The Hasse square is a pullback square

This is the special case of a local-to-global principle for any chain complex $M \in D_{\mathbb{Z}}$.

which is a homotopy pullback square, where M_p^{\wedge} denote the derived p-completion (p-local and $\text{Ext}^i(\mathbb{Q}, M_p^{\wedge}) = 0$, for i = 0, 1.)

The Category $\mathcal{D}_{\mathbb{Z}}$

 $\mathcal{D}_{\mathbb{Q}}$: The derived category of $\mathbb{Q}\text{-vector spaces.}$

 $(\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$: The category of derived p-complete complexes of abelian groups.

- **Solution** $(\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$ is compactly generated by \mathbb{Z}/p , any object $X \in (\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$ is trivial if and only if $X \otimes \mathbb{Z}/p$ is trivial.
- The only proper localizing subcategory (triangulated subcategory closed under shifts and colimits) of $(\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$ is (0).
- Any object $M \in \mathcal{D}_{\mathbb{Z}}$ can be reassembled from its derived p-completions $M_p^{\wedge} \in (\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$, its rationalization $Q \times M \in \mathcal{D}_{\mathbb{Q}}$, together with the gluing information specified in the pullback square on last page.

 $\{\mathbb{Q} \text{ and } \mathcal{F}_p \text{ for p prime}\} \leftrightarrow \{\mathcal{D}_{\mathbb{Q}} \text{ and } (\mathcal{D}_{\mathbb{Z}})_p^{\wedge} \text{ for p prime}\}\$

Examples of tensor-triangulated categories

- 1. The category of spectra.
- 2. The derived category D(R) of a commutative ring R.
- 3. The ∞ -category Mod_R of modules over an E_∞ -ring spectrum R.
- 4. The quasi-coherent shaves complexes over a scheme (algebraic stack).
- 5. Fun(K, C) when K is a ∞ -category and C is a tensor-triangulated category. If K = BG, then this functor category are those objects in C with a G-action.
- 6. Derived category of geometric motives $DM_{gm}(S) \subset DM(S)$ constructed by Voevodsky.
- 7. $S\!H_{gm}^{\mathbb{A}^1}(S)\subset S\!H^{\mathbb{A}^1}(S)$ of the stable \mathbb{A}^1 homotopy theory.
- 8. Homotopy category of Fukaya category Fuk(X) of a Calabi-Yau manifold X (symmetric tensor is induced by its mirror).
- 9. $kG \text{stmod} = \frac{kG mod}{kG proj} \cong \frac{D^b(kG mod)}{D^{perf}(kG)}$ in modular representation theory, for G a finite group.

5

- 10. Tensor-triangulated category of non-commutative motives by Kontsevich.
- 11. G-equivariant KK-theory (or its stabilization E-theory) of *C**-algebras in Alain Connes's non-commutative geometry.

Tensor-triangulated category

Definition

A tensor-triangulated category, is a triangulated category ${\cal K}$ together with a symmetric monoidal category structure

$$\otimes:\mathcal{K}\times\mathcal{K}\to\mathcal{K}$$

which is exact in each variable.

□ A thick subcategory $\mathcal{J} \subset \mathcal{K}$ is a triangular subcategory closed under direct summands: if $X \oplus Y \in \mathcal{J}$, then $X, Y \in \mathcal{J}$.

 $\square \mathcal{J} \subset \mathcal{K} \text{ is a tensor-triangular ideal if } \mathcal{K} \otimes \mathcal{J} \subset \mathcal{J}.$

Definition

A prime $\mathcal{P} \subset \mathcal{K}$ is a proper tensor-triangular ideal such that $X \otimes Y \in \mathcal{P}$ implies $X \in \mathcal{P}$ or $Y \in \mathcal{P}$.

Balmer's Spectrum

Definition

For ${\mathcal K}$ a tensor-triangular category, we define

 $\operatorname{Spc}(\mathcal{K}) = \{\mathcal{P} \subset \mathcal{K} | \mathcal{P} \text{is prime}\},\$

 $\mathrm{Supp}(X) = \{ \mathcal{P} \in \mathrm{Spc}(\mathcal{K}) | X \notin \mathcal{P} \}.$

The Supp has the following properties:

- 1. $\operatorname{Supp}(0) = \emptyset$ and $\operatorname{Supp}(\mathbb{I}) = \operatorname{Spc}(\mathcal{K})$.
- 2. $\operatorname{Supp}(a \oplus b) = \operatorname{Supp}(a) \cup \operatorname{Supp}(b)$, for every $a, b \in \mathcal{K}$
- 3. Supp $(\Sigma a) =$ Supp(a) for every $a \in \mathcal{K}$.
- 4. $\operatorname{Supp}(c) \subset \operatorname{Supp}(a) \cup \operatorname{Supp}(b)$ for every distinguished triangle $a \to b \to c \to \Sigma a$.
- 5. $\operatorname{Supp}(a \otimes b) = \operatorname{Supp}(a) \cap \operatorname{Supp}(b)$ for every $a, b \in \mathcal{K}$.

We define a topology on $Spc(\mathcal{K})$: $\{Supp(X)\}_{X \in \mathcal{K}}$ as a basis of closed subsets.

Ideal-Thomason Subset

Definition

For every subset $V \subseteq \text{Spc}(\mathcal{K})$, we can associate a tensor-triangular ideal

$$\mathcal{K}_V = \{ X \in \mathcal{K} | \operatorname{Supp}(X) \subseteq V \}.$$

A subset $V \subseteq \text{Spc}(\mathcal{K})$ is called a Thomason subset if it is the union of the complements of a collection of quasi-compact open subsets $V = \bigcup_{\alpha} V_{\alpha}$ where each V_{α} is closed with quasi-compact complement.

Theorem

The assignment $V \to \mathcal{K}_V$ defines a order-preserving bijection between the Thomason subsets $V \subset \text{Spc}(\mathcal{K})$ and the tensor-triangular ideal.

Examples: stable homotopy category

There is a map $\phi: S^0 \to \tau_{\leq 0} S^0 \simeq H\mathbb{Z}$,

$$\operatorname{Sp} \simeq \operatorname{Mod}_{S^0}(\operatorname{Sp}) \xrightarrow{\phi^*} \operatorname{Mod}_{H\mathbb{Z}}(\operatorname{Sp}) \simeq \mathcal{D}_{\mathbb{Z}}$$

$$\operatorname{Spc}(\mathcal{D}_{\mathbb{Z}}) \xrightarrow{\operatorname{Spc}(\phi^*)} \operatorname{Spc}(\operatorname{Sp}) \xrightarrow{\rho} \operatorname{Spc}(\mathbb{Z})$$

Question: What is the inverse image of the irreducible building block $(\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$? Answer: There are infinitely many blocks in Sp between (0) and $(\mathcal{D}_{\mathbb{Z}})_p^{\wedge}$

The Balmer's Spectrum of classical stable homotopy category (Hopkins-Smith ,1988-1996) is the following topological space.

■ $\mathcal{P}_{0,1} = \ker(SH^c \to SH^c = \cong D^b(\mathbb{Q})), \mathcal{P}_{n.\infty} = \ker(SH^c \to SH^c_{(p)}).$ ■ $\mathcal{P}_{p,n} = \ker(SH^c \to SH^c_{(p)} \to \mathbb{F}_p[v_{n-1}^{\pm 1}] - grmod)$ of localization at p and (n-1) Morava K-theory $K_{p,n-1}.$ The higher point belongs to the closure of the lower one.

A closed subset i s either empty, or the whole $Spc(SH^c)$, or a finite union of closed points $\{\mathcal{P}_{p,\infty}\}$ and of columns

$$\overline{\{\mathcal{P}_{p,m_p}\}} = \{\mathcal{P}_{p,n}|m_p \leq n \leq \infty\}$$

Examples

Theorem(Thomason, 1997)

Let X be a quasi-compact and quasi-separated scheme. Then there is a homeomorphism of topological space

$$X| \xrightarrow{\cong} \operatorname{Spc}(D^{perf}(X))$$

 $x \mapsto \mathcal{P}(X)$

where $\mathcal{P}(x) = \{Y \in D^{perf}(X) | Y_x \cong 0\}$

Corollary

Let A be a commutative ring, $K^b(A - proj) \cong D^{perf}(A)$. Then we have

 $\operatorname{Spec}(K^b(A - \operatorname{proj})) \cong \operatorname{Spec}(A).$

Examples

Theorem (Benson-Carlson-Richard, 1997)

Let G be a finite group, then there is a homeomorphism

$$\operatorname{Spc}(kG - stmod) \cong \operatorname{Proj}(H^{\bullet}(G, k)).$$

Theorem (Balmer-Sanders, 2017)

Let G be a finite group. Then every tensor triangular prime in $SH(G)^c$ is of the form $\mathcal{P}(H, p, n)$ for a unique subgroup $H \subset G$ up to conjugation, where

$$\mathcal{P}(H, p, n) \cong (\Phi^H)^{-1}(\mathcal{P}_{p,n})$$

is the preimage under geometric H-fixed points $\Phi^H : SH(G)^c \to SH^c$. If $K \triangleleft H$ is a normal subgroup of index p > 0, then $\mathcal{P}(K, p, n+1) \subset \mathcal{P}(H, p, n)$.

Chromatic Homotopy Theory

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

 $\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$

A commutative one-dimensional formal group over R is a functor

 $G: C_R \to Ab$

which is isomorphic to $\hat{\mathbb{A}}^1.$

 $\mathcal{O}_G \to \mathcal{O}_{G \times G} \cong \mathcal{O}_G \otimes \mathcal{O}_G$ $\mathcal{O}_G \text{ is just } R[\![X]\!] \text{ and } \mathcal{O}_G \otimes \mathcal{O}_G \text{ is } R[\![X]\!] \otimes_R R[\![Y]\!] = R[\![X, Y]\!].$ $\phi: R[\![X]\!] \to R[\![X, Y]\!]$ $X \to f(X, Y)$

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$ So F(x, 0) = F(0, x) = x (Identity) So $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity) So $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

There exists a ring L and $F_{univ}(x, y) \in L[x, y]$

 $\{\text{Formal Group Law over R}\} \longleftrightarrow \{L \to R\}$

such that $F(x, y) \in R[x, y]$ over R,

 $f^*(F_{univ}(x,y)) = F(x,y).$

Heights of Formal Groups

Let $f(x, y) \in R[x, y]$ 1. If n = 0, we set [n](t) = 0. 2. If n > 0, we set [n](t) = f([n-1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Examples

- Formal multiplicative group f(x, y) = x + y + xy, $[n](t) = (1 + t)^n 1$. If p = 0 in R, then $[p](t) = (1 + t)^p 1 = t^p$, so f has height 1.
- **Solution** Formal additive group f(x, y) = x + y, if p = 0 in R. Then [p](t) = 0, so f has infinite height.

Complex Oriented Cohomology Theories

Definition (Complex Orientation)

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^\infty)$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^\infty) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

$$E^*(\mathbb{CP}^{\infty}) \cong E^*(*)\llbracket t \rrbracket = (\pi_* E)[[t]]$$
$$(\pi_* E)[[t]] \cong E^*(\mathbb{CP}^{\infty}) \to E^*(\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}) \cong (\pi_* E)[[x, y]]$$

{complex oriented cohomology theory E} \rightarrow Fromal Groups $G_E = \text{Spf}E^0(\mathbb{C}P^\infty)$.

$$E \longrightarrow G_E = \mathrm{Spf} E^0(\mathbb{C} P^\infty).$$

Theorem (Quillen, 1969)

MU is the universal complex oriented cohomology theory, $L \cong \pi_*$ MU. For E complex oriented, $MU \to E$, induce $L = \pi_* MU \to \pi_* E$.

The Landweber Exact Functor Theorem

If we already have a ring map $L \rightarrow R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

 $E_*(X) = MU_*(X) \otimes_{\pi_*MU} R = MU_*(X) \otimes_L R$

Landweber's Exact Functor Theorem , 1976

Let *M* be a module over the Lazard ring L. Then *M* is flat over \mathcal{M}_{FG} if and only if for every prime number *p*, the elements $v_0 = p, v_1, v_2, \dots \in L$ form a regular sequence for *M*

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to *R* is a triple (G, i, Ψ) satisfying

- 1. G is a formal group over R,
- 2. There is a map $i : k \rightarrow R/m$,
- 3. There is an isomorphism $\Psi : \pi^* G \cong i^* G_0$ of formal groups over R/m.

Lubin-Tate's Theorem , 1966

There is a universal formal group *G* over $R_{LT} = W(k)[[v_1, \dots, v_n - 1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

 $\operatorname{Hom}_{/k}(R_{LT}, A) \to \operatorname{Def}(A).$

Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

$$\pi_* E(n) = W(k) \llbracket v_1, \cdots, v_{n-1} \rrbracket [\beta^{\pm 1}]$$

Theorem (Goerss-Hopkins-Miller)

The spectrum E(n) admits a unique E_{∞} -ring structure.

M(k) denote the cofiber of the map $\sum^{2k} MU_{(p)} \to MU_{(p)}$ given by the multiplication by t_k .

Let K(n) denote the smash product

$$MU_{(p)}[v_n^{-1}] \otimes_{MU_{(p)}} \bigotimes_{k \neq p^n - 1} M(k).$$

This spectrum K(n) is called **Morava K-theory**. The homotopy groups of K(n) is

$$\pi_* K(n) \cong (\pi_* M U_{(p)})[v_n^{-1}]/(t_0, t_1, \cdots, t_{p^n-2}, t_{p^n}, \cdots) \cong \mathbb{F}_p[v_n^{\pm 1}]$$

Properties of Morava K-theories

A commutative evenly graded ring is a graded field every nonzero homogeneous element is invertible. Equivalently, R is a field or $R \simeq k[\beta^{\pm}]$.

We say a homotopy associative ring spectrum is a field if $\pi_* E$ is a graded filed.

Example For every prime p and every integer n, K(n) is a field. Proposition If E is an field such that $E \otimes K(n)$ is nonzero, then E admits a structure of K(n)-module. □ Let E be complex-oriented ring spectrum of height n and $\pi_* E \simeq \mathbb{F}_n[v_n^{\pm 1}]$. Then $E \simeq K(n)$.

Localization

Let S be a set of prime numbers, for example S = (p).

A ring R is S-local, if all prime numbers not in S is invertible in R.

A group G is said to be S-local if the p^{th} power map $G \to G$ is a bijection for $p \notin S$. If G is abelian,

1. G is S-local;

2. G admits a structure of Z_S -module (necessarily unique);

Definition

A spectrum X is called S-local if its homotopy groups are S-local abelian groups.

The S-localization can be constructed as the Bousfield localization of spectra with respect to the Moore spectrum $M(\mathbb{Z}_S)$

Localization

The general idea of localization at a spectrum E is to associate to any spectrum X the "part of X that E can see", denoted by $L_E X$. L_E is a functor with the following equivalent properties:

 $\Box \Box E \wedge X \simeq * \Rightarrow L_E X \simeq *.$

If $X \to Y$ induces an equivalence $E \land X \to E \land Y$ then $L_E X \to L_E Y$.

Bousfield Localization

Let C be a full subcategory of Sp, which is closed under shifts and homotopy colimits, and can be generated by small subcategory under homotopy colimits.

If *X* is a spectrum, define G(X) to be the homotopy colimit of all $Y \in C$ with a map to *X*.

We have a counit map $v : G(X) \to X$, and we let L(X) denote the cofiber of v, then we have a cofiber sequence

$$G(X) \to X \to L(X).$$

A spectrum is \mathcal{C} -local if every may $Y \to X$ is nullhomotopic when $Y \in \mathcal{C}$. We denote the category of \mathcal{C} -local spectra as \mathcal{C}^{\perp}

Bousfield localization

Let G_E the collection of E-acyclic spectra. We say that a spectrum is E-local if every map for every $Y \in G_E$, the map $Y \to X$ is nullhomotopic. We have a cofiber sequence

 $G_E(X) \to X \to L_E(X).$

where $G_E(X)$ is E acyclic and $L_E(X)$ is E-local. This functor is called Bousfield localization with respect to E.

The map $X \to L_E(X)$ is characterized up to equivalence by two properties.

1. The spectrum $L_E(X)$ is E-local.

2. The map $X \to L_E(X)$ is an E-equivalence.

Theorem

A spectrum X is E-local if and only if for each E-equivalence $S \to T$, the induced map $[T, X] \to [S, X]$ is an isomorphism.

Moore Spectrum

For G an abelian group, then the Moore spectrum MG of G is the spectrum characterized by having the following homotopy groups:

- 1. $\pi_{<0}MG = 0;$
- 2. $\pi_0(MG) = G;$
- 3. $H_{>0}(MG, Z) = \pi_{>0}(MG \wedge HZ) = 0.$

A basic special case of E-Bousfield localization of spectra is given by E = MA the Moore spectrum of an abelian group A.

- 1. For $A = Z_{(p)}$, this is p-localization.
- 2. For $A = F_p$, this is p-completion
- 3. For $A = \mathbb{Q}$, this is the rationalization .

Examples of Localization

Theorem

p-Localization is a smashing localization:

$$L_{MZ_{(p)}}X \simeq MZ_{(p)} \wedge X$$

We denote this as $L_{MZ_{(p)}}X\simeq X_{(p)}$, which is called the Bousfield p-localization

A spectrum E is p-complete, if π_*E is a (p)-adic complete ring. Bousfield localization at the Moore spectrum MF_p is p-completion to p-adic homotopy theory.

Theorem

The localization of spectra at the Moore spectrum MF_p is given by the mapping spectrum out of $\Omega M\mathbb{Z}/p^{\infty}$:

$$L_p = L_{MF_p} X \simeq [\Omega M \mathbb{Z} / p^{\infty}, X]$$

where $\mathbb{Z}/p^{\infty} = \mathbb{Z}[1/p]/\mathbb{Z}$. We denote this spectrum $L_p = L_{MF_p}X$ as X_p^{\wedge}

Examples of Localization

 $L_{M\mathbb{Q}}X = X \wedge L_{\mathbb{Q}}S^0 = X \wedge M\mathbb{Q} = X \wedge H\mathbb{Q}$ is smashing, we call this as the rationalization of X, denote it as $L_{\mathbb{Q}}X$.

Examples

Localization with respect to E(n) and K(n).

$$\square L_{E(n)}, \text{ behaves like restriction to the open substack}$$

$$\mathcal{M}_{FG}^{\leq n} \subset \mathcal{M}_{FG} imes \operatorname{Spec}\mathbb{Z}_{(p)}.$$

□ $L_{K(n)}$, behaves like completion along the locally closed substack $\mathcal{M}_{FG}^n \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.

Localization with respect to E(n) and K(n)

Lemma

The Spectrum E(n) is Bounsfield equivalent to $E(n) \times K(n)$. Here $E(0) = H\mathbb{Q}[\beta^{\pm}]$ which is Bounsfield equivalent to $H\mathbb{Q}$.

So a spectrum is E(n)-acyclic if and only if it is both E(n)-acyclic and K(n)-acyclic.

$$L_{E(n)}(X) \cong L_{K(0) \vee K(1) \cdots K(n)}(X).$$

There is pullback square

This come from $L_{E(n-1)}X$ is K(n)-acyclic and the following Lemma

Lemma

Let E, F, X be spectra with $E_*L_FX = 0$. Then there is a homotopy pullback square.

 $L_F X \longrightarrow L_F(L_E X)$

So we have the following **Suillivan arithmetic square** for $E = \bigvee_{p} M(Z/p), F = H\mathbb{Q}$

In chromatic homotopy, we often cares the Bousfield localization with respect to the Morava E-theories and Morava K-theories.

Nilpotence

We say that a collection of ring spectra $\{E^{\alpha}\}$ detect nilpotence if for any p-local ring spectra R, $x \in \pi_m R$ is send to zero in $E_0^{\alpha} R$ for all α , then x is nilpotent in $\pi_* R$.

Nilpotence Theorem (Devinatz-Hopkins-Smith, 1988)

For any ring spectrum R, the kernel of the map $\pi_*R \to MU_*R$ consists of nilpotent elements. In particular, the single MU detects nilpotence.

Theorem

The spectra $\{K(n)\}_{0 \le n \le \infty}$ detect nilpotence.

Let E be a nonzero p-local ring spectrum, then $E \otimes K(n)$ is nonzero for some $0 \le n \le \infty$. If not, every element of $\pi_0 E$ is nilpotent, so $\mathbb{I} \in \pi_0 E$ is nilpotent, so that $E \simeq 0$.

Thick Subcategories

Let C be a full subcategory of finite p-local spectra. We say that C is **thick** if it contains 0, closed under fiber and cofibers, and every retract of a spectrum belong to C also belongs to C.

Lemma

Let X be a finite p-local spectrum, if $K(n)_*(X) \simeq 0$ for some n > 0. Then $K(n - 1)_*(X) = 0$.

We say that a p-local finite spectrum has type n if $K(n)_*(X) \neq 0$ and $K(m)_*(X) = 0$ for m < n. X has type 0 if $H_*(X, \mathbb{Q}) \simeq 0$.

We let $C_{\geq n}$ be the category of p-local spectra which has type $\geq n$.

Thick Subcategory Theorem

Let \mathcal{T} be a thick subcategory of finite p-local spectra. Then $\mathcal{T} = C_{\geq n}$ for some $0 \leq n \leq \infty$.

Different Localizations

We have an adjunction

inclusion : $G_E = \{E - \text{acyclic}\} \leftrightarrows \text{Sp} : G_E$

Localization with respect to E means localization with respect to G_E .

$$G_E \hookrightarrow \operatorname{Sp} \xrightarrow{L_E} E - \operatorname{local} = (G_E)^{\perp}$$

 $G_E(X) \longrightarrow X \longrightarrow L_E(X)$

We know E(n) acyclic means E(n-1) acyclic and K(n)-acyclic, but ker $L_E = G_E = \{E(n) - \text{acyclic}\}$, so we get inclusions

 $0 = \ker(id) \subset \ker(L_{E(\infty)}) \cdots \subset \ker(L_{E(n)}) \subset \ker(L_{E(n-1)}) \cdots \ker(L_{E(0)}) \subset \operatorname{Sp}$ by taking orthocomplement, we get

 $0 \subset E(1)$ -local Sp $\subset \cdots \subset E(n-1)$ -local Sp $\subset E(n)$ -local Sp $\subset \cdots$

Different Localization

We have $K(n)_*(X) = 0 \Rightarrow K(n-1)_*(X) = 0$.

$$\mathcal{C}_{\geq n} = \{ X \in \operatorname{Sp}_{(p)} | X \text{ has type } \geq n, i.e., K(m)_* X = 0, m < n \}$$

So we have sequence

$$(0) \subset \cdots \subset \mathcal{C}_{\geq n+1} \subset \mathcal{C}_{\geq n} \subset \cdots \subset \mathcal{C}_{\geq 0} = \mathrm{Sp}$$

by taking orthocomplement, we get

 $\mathcal{C}_{\geq 0}$ local spectra $\subset \cdots \subset \mathcal{C}_{\geq n}$ local spectra $\subset \mathcal{C}_{\geq n+1}$ local spectra $\subset \cdots$

Telescope Localization

The telescope localization L_n^t : Localization with respect to $C_{\geq n+1}$.

$$C(X) \to X \to L_n^t(X).$$

where C(X) is a filtered colimit of object in $\mathcal{C}_{\geq n+1}$
Different Localizations

Definition

We say a localization functor L is a smash localization if $L(X) = K \land X$ for a K.

The following conditions are equivalent

- 1. L preserves homotopy colimits.
- 2. $C^{\perp} \subset \operatorname{Sp}$ is stable under homotopy colimits
- 3. *G* preserves homotopy colimits.

4. $L(X) = K \wedge X$.

Examples

- **GO** $L_{E(n)}$ is a smash localization.
- **GS** L_n^t is a smash localization.

For any smashing localization L

$$\ker(L_n^t) \subset \ker(L) \subset \ker(L_{E(n)})$$

So there is a comparison

610

$$L_n^t \to L \to L_{E(n)}$$

The periodicity theorem: find a type n spectrum

Consider the cofiber sequence

$$\Sigma^k X \xrightarrow{f} X \to X/f$$

If we have *X* has type $\leq n$, we hope X/f has type $\leq n + 1$

Definition

Let X be finite p-local spectrum, a v_n self map is a map $f : \Sigma^q X \to X$ and satisfying the following,

1. f induces an isomorphism $K(n)_*(X) \to K(n)_*X$.

2. The induced map $K(m)_*(X) \to K(m)_*(X)$ is nilpotent, for $m \neq n$.

Theorem

Let X be a finite p-local spectrum of type $\geq n$, then X admits a v_n -self map.

Telescopic Localization

 $X \xrightarrow{f} \Sigma^{-k}(X) \xrightarrow{f} \Sigma^{-2k}(X) \xrightarrow{f} \cdots$

Let $X[f^{-1}]$ denote the colimit of this sequence.

Proposition

1. If
$$X \in \mathcal{C}_{\geq n}$$
, then $L_n^t(X) \simeq X[f^{-1}]$.

2. There is a fiber sequence

$$\lim_{\substack{\to\\ k_0,\cdots,k_n}} \Sigma^{-n} X/(v_0^{k_0},\cdots,v_n^{k_n}) \to X \to L_n^t(X).$$

Monochromatic

Let $L_n(X) = L_{E(n)}(X)$, then we have the following chromatic tower.

where the monochromatic layers $M_n(X)$ are defined by the fiber sequence.

$$M_n(X) \to L_n(X) \to L_{n-1}(X)$$

The following is the chromatic convergence theorem proved by Hopkins- Ravenel.

Chromatic Convergence Theorem

Then Canonical Map $X \to \lim_n L_n X$ is an equivalence for a p local finite spectrum X.

Definition

Monochromatic A spectrum X is monochromatic of height n if it is E(n)-local and E(n-1)- acyclic.

We let \mathcal{M}_n denote the category of all spectra which are monochromatic of height n.

Theorem

There is a equivalence of category between the homotopy category of monochromatic spectra of height n and the homotopy category of K(n)-local spectra, which is given by the functor

 $L_{K(n)}: \mathcal{M}_n \rightleftharpoons K(n)$ local spectra : M_n

K(n)-Local Spectra

- 1. $\operatorname{Sp}_{K(n)}$ is compactly generated by $L_E(n)F$, for any type n spectrum F, an object $X \in \operatorname{Sp}_{K(n)}$ is trivial if an donly $X \wedge K(n)$ is trivial.
- 2. The only proper localizing subcategory of $Sp_{K(n)}$ is (0).
- 3. A spectrum $X \in \text{Sp}_{E(n)}$ can be reassembled form $L_{K(n)}X$, $L_{E(n-1)}X$, together with the gluing information.

The chromatic approach to $\pi_* S^0_{(p)}$:

- 1. Compute $\pi_* L_{K(n)} S^0$ for each n.
- 2. Understanding the gluing of above square.
- 3. Using chromatic convergence $\lim_n \pi_* L_{E(n)} S^0 \cong \pi_* S_{(p)}$

From Algebra to Algebraic Topology

How do we detect topological structure from algebraic information? E_* module structure with symmetry \Longrightarrow Fixed point spectral sequence. E_* (E_*, E_*E) module structure \Longrightarrow Adams spectral sequence

Morava Stabilizer Groups

We let G_0 denote a formal group of height n over a perfect field k/\mathbb{F}_p The small Morava stabilizer group $\operatorname{Aut}_k(G_0)$ is the group of automorphism of G_0 with coefficients in k,

$$\operatorname{Aut}(G_0) = \{ f(x) \in k[[x]] : f(G_0(X, Y)) = G_0(f(x), f(y)), f'(0) \neq 0 \}$$

Since G_0 is defined over k, the Galois group $Gal = Gal(k/\mathbb{F}_p)$ act on G_0 by acting on the coefficients.

The Morava stabilizer group \mathbb{G}_n is defined by

$$\mathbb{G}_n = \operatorname{Gal}(k/\mathbb{F}_p) \ltimes \operatorname{Aut}(G_0)$$

Morava Stabilizer Groups

 $(G_0, k) \longrightarrow \text{Morava E-theory}E(G_0, k)$

Does the action \mathbb{G}_n lifts to $E(G_0, k)$?

Theorem (Devinatz-Hopkins, Goerss-Hopkins-Miller)

The Morava stabilizer group acts on E_n , and it givens essential all automorphisms of E(n)

$$E(n)^{h\mathbb{G}_n}\simeq L_{K(n)}S^0$$

Example

1

When p is odd and n=1,
$$L_{K(1)}(S)$$
 is the spectrum $\widehat{KU}^{\psi^{g}=1}$

Homotopy fixed point spectral sequence

If we E_* module structure with an action of Morava stabilizer group \mathbb{G}_n , how can we get $L_{K(n)}S^0$?

 $\operatorname{Sp}_{K(n)} \longrightarrow \{ \text{ Morava Modules } : E_* \text{ module structure with action of } \mathbb{G}_n \}$

Proposition

There is a homotopy fixed point spectral sequence (descent spectral sequence)

$$E_2^{s,t} = H^s_{gp}(G; \pi_t(X)) \Longrightarrow \pi_{t-s}(X^{hG})$$

similarly for X_{hG} , X^{tG} .

We have $E(n)^{h\mathbb{G}_n} \simeq L_{K(n)}S^0$, so

$$E_2^{s,t} \cong H^s_{gp}(\mathbb{G}, E(n)_t) \Longrightarrow \pi_{t-s} L_{K(n)} S^0$$

The structure of Morava stabilizer group

For f a formal group law over $\overline{\mathbb{F}}_p$.

$$\operatorname{End} f = \{g(t) \in tR[\![t]\!] \mid f(g(x), g(y)) = gf(x, y)\}$$

Proposition

End(f) is a noncommutative local ring: The collection non-invertible elements is the left ideal generated by $\pi(t) = \nu(t^p)$, where $\nu f^p(x, y) = f(\nu(x), \nu(y))$.

Let $D = \mathbb{Q} \otimes \operatorname{End}(f)$.

Lemma

D is a central division algebra over \mathbb{Q}_p . And $\operatorname{End}(f) = \{x \in D : v(x) \ge 0\}$.

Morava Stabilizer Group

$$\det: \mathbb{G}_n \to \mathbb{Z}_p^{\times} \quad \det: \mathbb{S}_n \to \mathbb{Z}_p^{\times}$$

Composition with $\mathbb{Z}_p^{\times}/\mu \cong \mathbb{Z}_p$.

$$\zeta_n: \mathbb{G}_n \to \mathbb{Z}_p$$

Let $\mathbb{G}_n^1 = \ker \zeta_n$, we have

$$\mathbb{G}_n \cong \mathbb{G}_n^1 \rtimes \mathbb{Z}_p, \quad \mathbb{S}_n \cong \mathbb{S}_n^1 \rtimes \mathbb{Z}_p.$$

As a consequence of $\mathbb{G}_n/\mathbb{G}_n^1 \rtimes \mathbb{Z}_p$, there is a equivalence $L_{K(n)}S^0 \simeq (E_n^{h\mathbb{G}_n^1})^{h\mathbb{Z}_p}$.

$$L_{K(n)}S^0 \longrightarrow E_n^{h\mathbb{G}_n^1} \xrightarrow{\psi-1} E_n^{h\mathbb{G}_n^1} \xrightarrow{\delta} \Sigma L_{K(n)}S^0.$$

The action of Morava stabilizer group

Let F_n be the universal deformation over $(E_n)_0$ of G_0 . If we have $\alpha = (f, \sigma) \in \mathbb{G}_n$. The universal property of F_n implies that there is ring isomorphism $\alpha_* : (E_n)_0 \to (E_n)_0$ and an isomorphism of formal group laws $f_\alpha : \alpha_*F_n \to F_n$. And the action can extends to $(E_n)_* \cong \mathbb{W}_n[[u_1, \cdots, u_{n-1}]][u^{\pm 1}]$

1. $\alpha = (id, \sigma)$ for $\sigma \in \text{Gal}(k/\mathbb{F}_p)$. Then the action is action of Galois group on \mathbb{W}_n .

2. If $\omega \in S_n$ is a primitive $(p^n - 1)$ -th root of the unity, then $\omega_*(u_i) = \omega^{p^i - 1}u_i$ and $\omega_*(u) = \omega u$.

3. $\Psi \in \mathbb{Z}_p^{\times} \subset \mathbb{S}_n$ is the center, then $\psi_*(u_i) = u_i$ and $\psi_* u = \psi u$.

Theorem (Devinatz-Hopkins)

Let $1 \leq i \leq n-1$ and $f = \sum_{j=0}^{n-1} \in \mathbb{S}_n$, where $f_j \in \mathbb{W}_n$. Then modulo $(p, u_1, \cdots , u_{n-1})^2$,

$$f_*(u) \equiv f_0 u + \sum_{j=1}^{n-1} f_{n-j}^{\sigma^j} u u_j \qquad f_*(uu_i) \equiv \sum_{j=1}^i f_{i-j}^{\sigma^j} u u_j + \sum_{j=i+1}^n p f_{n+i-j}^{\sigma^j} u u_j$$

Stable Homotopy Groups of Sphere

Lemma

The K(1)-local sphere $L_{K(1)}S$ is given by the homotopy fiber of the map $\Psi^g - 1$: $\widehat{KU} \to \widehat{KU}$.

$$\pi_{2n}(\widehat{KU}^{\Psi^g-1}) \simeq 0$$

$$\pi_{2n-1}(\widehat{KU}^{\Psi^g-1}) \simeq \mathbb{Z}^p/(g^n-1).$$

By this theorem, we can compute the homotopy group of $L_{K(1)}S$

$$\pi_n L_{K(1)} S = \begin{cases} \mathbb{Z} & n = 0\\ \mathbb{Q}_p / \mathbb{Z}_p & n = -2\\ Z / p^{k+1} Z & n+1 = (p-1)p^k m, p \nmid m\\ 0 & \text{otherwise} \end{cases}$$

Let $im(J)_n$ denote the image of the composition map

$$\pi_n(O) \to \pi_n(S) \to \pi_n(S_{(p)})$$

The relation of image of J and the $L_{(K(1))}S$ is described as

Theorem

For n > 0, the Bousfield Localization at E(1), $S_{(p)} \rightarrow L_{E(1)}S$ induces an isomorphism

$$im(J)_n = \pi_n(L_{E(1)}S)$$

In particular, $\pi_n S_{(p)} \rightarrow \pi_n L_{E(1)} S$ is surjective.

By this theorem and the computation of $L_{(E(1))}S$, we can get

$$\pi_{2n}(KU) \to \pi_{2n-1}(U) \xrightarrow{J} \pi_{2n-1}(S) \to \pi_{2n-1}(\widehat{KU}^{\Psi^g-1})$$

is surjective, and for n > 0,

$$im(\pi_*J)_{(p)} = \begin{cases} \mathbb{Z}/p^{k+1} & n = (p-1)p^k m, p \nmid m \\ 0 & (p-1) \nmid n. \end{cases}$$

Adams Spectral Sequence

There is an equivalence

 $D(R) \cong \operatorname{Mod}_{HR}(\operatorname{Sp})$

Homology forget the A_p -module structure.

$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}_p}^{s,t}(H^*Y, H^*X) \Longrightarrow [X, Y_p^{\wedge}]_{t-s}$$

1.
$$E_2^{s,t} = \operatorname{Ext}_{\mathcal{A}_p}^{s,t}(\mathbb{F}_p, \mathbb{F}_p) \Longrightarrow \pi_*(\mathbb{S})_p$$

E based Admas spectral sequence

There exists a cohomological spectral sequence $E_*^{*,*}$ such that

$$E_2^{s,t} = Ext_{E^*E}^{s,t}(E^*Y, E^*X) \Longrightarrow [X, \Sigma^{t-s}Y]_E$$

where $[X, \Sigma^{t-s}Y]_E$ is the set of stable homotopy class form X to Y in an E-localization.

Power Operations

Suppose C is a tensor triangulated category (presentable stable symmetric momoidal ∞ category), then the functor

 $\pi_0 : \operatorname{CAlg}(\mathcal{C}) \longrightarrow \operatorname{Set}, R \mapsto \pi_0 \operatorname{Map}_{\mathcal{C}}(\mathbb{I}, R)$

is represented by the free commutative algebra on a copy of the unit, $\mathbb{I}\{t\}$. We can define the power operation on $\pi_0 R$ which is given by the elements of $\pi_0 \mathbb{I}\{t\} = \pi_0 \bigoplus \mathbb{I}_{h\Sigma_s}^{\otimes} \cong \pi_0 \bigoplus \mathbb{I}_{h\Sigma_s}$.

Definition

To each object $P \in \pi_0 \mathbb{I}_{h\Sigma_r}$, we define the power operation of weight r by sending a class $x \in \pi_0 R = [\mathbb{I}, R]$ to be the composite

$$\mathbb{I} \stackrel{P}{\longrightarrow} \mathbb{I}_{h\Sigma_r} \hookrightarrow \oplus_s \mathbb{I}_{h\Sigma_s} \cong \mathbb{I}\{t\} \stackrel{t \mapsto x}{\longrightarrow} R.$$

Power Operations

If *E* is a structured commutative ring spectra (ie, a commutative S-algebra), we have have a map $E^*(X) \to E^*(X^m)$ given by $x \to x^{\times m}$, then there is **total m-th power operation**

 $P_m: E^0(X) \to E^0(X \times B\Sigma_m)$

If h^* is a multiplicative cohomology theory, that is, we have map: $h^p(X) \otimes h^q(X) \to h^{p+q}(X)$. Then we have the m-th power map

 $h^q(X) \to h^{mq}(X): \quad x \mapsto x^m.$

Let R be a commutative S-algebra in the context of EKMM category , and M is an R-module, then we can define a free commutative R-algebra on M:

$$\mathbb{P}_R M = \bigvee_{m \ge 0} \mathbb{P}_R^m(M) \cong \bigvee_{m \ge 0} (M \wedge_R \cdots \wedge_R M)_{h \Sigma m}$$

And if A is commutative R-algebra A, then we have a map

$$\mu: \mathbb{P}_R A \to A.$$

If A is a commutative R -algebra.

- 1. We can choose a $\alpha : R \to \mathbb{P}_R^m(R) \cong R \land B\Sigma^+$
- 2. For any element $x \in \pi_0 A$ which is represented by $f_x : R \to A$.
- 3. We define a element $Q_{\alpha}(x) \in \pi_0 A$ which is represented by the following composite

$$R \stackrel{\alpha}{\longrightarrow} \mathbb{P}^m_R(R) \stackrel{\mathbb{P}^m_R(f_x)}{\longrightarrow} \mathbb{P}^m_R(A) \subset \mathbb{P}_R(A) \stackrel{\mu}{\longrightarrow} A$$

So we have define a map $Q_{\alpha}: \pi_0 A \to \pi_0 A$. And we can also define $Q_{\alpha}: \pi_q A \to \pi_{q+r} A$ if

$$\alpha: \Sigma^{q+r} R \to \mathbb{P}_R^m(\Sigma^q R) \cong R \wedge B\Sigma_m^{qV_m}.$$

Example of Power Operations

Let $H = H\mathbb{F}_2$ is the mod 2 Maclane spectrum, if A is a commutative H-algebra spectrum, then π_*A is a graded commutative \mathbb{F}_2 -algebra. $Q^r : \pi_q A \to \pi_{q+r}A$ $Q^r(x+y) = Q^r(x) + Q^r(y)$. $Q^r(xy) = \sum Q^i(x)Q^{r-i}(y)$. $Q^r Q^s(x) = \epsilon_{r,s}^{i,j}Q^iQ^j(x)$ if r > 2s, where $i \le 2j$. if $A = \operatorname{Fun}(\Sigma^{\infty}X, H\mathbb{F}_2)$, then the power operations are Steenrod operations on $H^*(X, \mathbb{F}_2)$.

Power Operations in K-theory

If K is the complex K-theory spectrum, and A is a p-complete K-algebra. ψ^p : $\pi_0 A \to \pi_0 A$. $\mathfrak{sp} \ \psi^p(x+y) = \psi^p(x) + \psi^p(y)$. $\mathfrak{sp} \ \psi^p(x) \equiv x^p \mod p$. $\mathfrak{sp} \ \psi(xy) = \psi(x)\psi(y)$.

Power Operation in Morava E-theories

Theorem (Rezk) There exists a monad \mathbb{T} on the category of discrete E_0 -modules whose categroy of algebras $\operatorname{Alg}_{\mathbb{T}}$ is the image of the functor $\pi_0(-)$ on commutative E-algebras. $\operatorname{Alg}_{\mathbb{T}}^{\pi_0} \bigvee_{\mathcal{V}_{\mathbb{T}}}^{\mathcal{I}} U_{\mathbb{T}}$ $\operatorname{CAlg}_E^{\wedge} \xrightarrow{\pi_0} \operatorname{CRing}_{E_0}$

In the case n = 1 and $E = E(\mathbb{F}_p, \mathbb{G}_m) = KU_p$. Alg_T can be identified with the category $\operatorname{CRing}_{\delta}$ -rings. If R is a T(1)-local commutative KU_p algebra, then there is a operation $\delta : \pi_0(R) \to \pi_0(R)$ which act as a p-derivation

$$\psi(x) = x^p + p\delta(x)$$

For formal reasons, the forgetful functor $U_{\mathbb{T}} : \operatorname{Alg}_{\mathbb{T}} \to \operatorname{CRing}_{E_0}$ admits both left and right adjoint

 $U_{\mathbb{T}} : \operatorname{Alg}_{\mathbb{T}} \rightleftharpoons \operatorname{CRing}_{E_0} : W_{\mathbb{T}}$ $F_{\mathbb{T}} : \operatorname{CRing}_{E_0} \rightleftharpoons \operatorname{Alg}_{\mathbb{T}} : U_{\mathbb{T}}$

In the case of $\operatorname{Alg}_{\mathbb{T}} = \operatorname{CRing}_{\delta}$ at height 1, we have $W_{\mathbb{T}}(A) = W(A) = \pi_0 E(A)$. By composing with the adjunction

$$(-/p)^{\sharp}$$
: CRing \rightleftharpoons Perf_{**F**_p}: Incl

We obtain an adjunction

$$(U(-)/p)^{\sharp} : \operatorname{CRing}_{\delta} \rightleftharpoons \operatorname{Perf}_{\mathbb{F}_p} : \pi_0 E(-)$$

This adjunction can be generalize to any height.

Theorem (Burklund-Schlank-Yuan, 2022)

There is an adjunction

$$(U(-)/m)^{\sharp} : \operatorname{Alg}_{\mathbb{T}} \rightleftharpoons \operatorname{Perf}_k : \pi_0 E(-)$$

where the right adjoint $\pi_0 E(-)$ is fully faithful.

Theorem (Rezk)

Let A be a K(n)-local E-Algebra, then the power operation of the homotopy group of A has the structure of an amplified Γ -ring.

We say that a graded Γ -algebra B satisfies the congruence condition if for all $x \in B_0$,

 $x\sigma \equiv x^p modpB.$

Theorem

An object $B \in \operatorname{Alg}_{\Gamma}^*$ which is p-torsion free, then *B* admits the structure of a \mathbb{T} -algebra if and only B satisfies the congruence condition.

Sheaves on the Categories of Deformations

Let R be complete local ring whose residue has characteristic p. Let $\phi : R \to R, x \mapsto x^p$ be the Frobenius map.

The **Frobenius isogeny** Frob : $G \to \phi^* G$ is induced by the relative Frobenius map on rings. We write $\operatorname{Frob}^r : G \to (\phi^r)^* G$ which is the composition $\phi^*(\operatorname{Frob}^{r-1}) \circ \operatorname{Frob}$

Let (G, i, α) and $(G', i'\alpha')$ be two deformation of G_0 to R. A deformation of Frob^r is a homomorphism $f : G \to G'$ of fromal groups over R which satisfying 1. $i \circ \phi^r = i'$ and $i^*(\phi^r)^* G_0 = (i')^* G_0$.

2. the square

of homomorphisms of formal groups over R/m commutes.

We let Def_R denote the category whose objects are deformations fo G_0 to R, and whose morphisms are homomorphism which are deformation of Frob^r for some $r \ge 0$. Say that a morphism in Def_R has **height** r, if it is a deformation of Frob^r .

Proposition

Let G be deformation of G_0 to R, then the assignment $f \to \text{Ker} f$ is a one-to-one correspondence between the morphisms in Sub_R^r with source G and the finite subgroup of G which have rank p^r .

For the following, Let $G_E = G_{univ}/E_0$ be the universal deformation of G_0 .

Deformation of Frobenius

Theorem (Strickland, 97)

Let G_0/k be a formal group of height h over a perfect field k. For each r > 0, there exists a complete local ring A_R which carries a universal height r morphism f_{univ}^r : $(G_s, i_s, \alpha_s) \rightarrow (G_t, i_t, \alpha_t) \in Sub^r(A_r)$. That is the operation $f_{univ}^r \rightarrow g^*(f_{univ}^r)$ define a bijective relation from the set of local homomorphism $g : A_r \rightarrow R$ to the set Sub_R^r . Furthermore, we have:

- 1. $A_0 \approx W(k)[[v_1, \cdots, v_{h-1}]].$
- 2. Under the map $s : A_0 \to A_r$ which classifiers the source of the universal height r map, i.e. $G_s = i^* G_E$, and A_r is finite and free as an A_0 module.
- 3. Under the map $t : A_0 \to A_r$ which classifies the target of the universal height r map, i.e. $G_t = t^* G_E$

So there is a bijection

$$\{g: A_r \to R\} \to Sub^r(R)$$

$$g \mapsto g^*(f_{univ}^r)(g^*G_s \to g^*G_t)$$

Thus, $Sub = \coprod Sub^r$ is a affine graded-category scheme. In particular, there are ring maps:

$$s=s_k, t=t_k: A_0 \to A_k,$$

which is induced by E^0 cohomology on $B\Sigma \rightarrow *$

$$\mu = mu_{k,l} : A_{k+l} : A_{k+l} \to A_k^{s} \otimes_{A_0} {}^t A_l$$

which classifying the source, target, and composite of morphisms.

```
Theorem (Strickiand, 1998)

The ring A[r] in the universal deformation of Frobenuis is isomorphic to

E^0(B\Sigma_{p^r})/I, i.e,

A[r] \cong E^0(B\Sigma_{p^r})/I

where I is transfer ideal.
```

So for the power operation

$$R^k(X) \to R^k(X \times B\Sigma_m)$$

For x = *, we have $\pi_0 R \to E^0(B\Sigma_{p^r})/I \otimes \pi_0 R = A[r] \otimes \pi_0 R$. This make $\pi_0 R$ becomes a Γ -module.

Andre-Quillen Cohomology Groups

Let A be a commutative ring, B be an A-algebra, and M be a B-module. The André-Quillen cohomology groups are the derived functors of the derivation functor $Der_A(B, M)$.

Morphisms of commutative rings $A \rightarrow B \rightarrow C$ and a C-module M, there is a three-term exact sequence of derivation modules:

$$0 \to \operatorname{Der}_B(C, M) \to \operatorname{Der}_A(C, M) \to \operatorname{Der}_A(B, M)$$

Let P be a simplicial cofibrant A-algebra resolution of B. André notates the qth cohomology group of B over A with coefficients in M by $H^q(A, B, M)$, while Quillen notates the same group as $D^q(B/A, M)$. The q-th André-Quillen cohomology group is:

$$D^q(B/A, M) = H^q(A, B, M) \stackrel{\text{def}}{=} H^q(\text{Der}_A(P, M))$$

Let $L_{B/A}$ denote the relative cotangent complex of B over A. Then we have the formulas:

$$D^q(B/A, M) = H^q(\operatorname{Hom}_B(L_{B/A}, M))$$

 $D_q(B/A, M) = H_q(L_{B/A} \otimes_B M)$

In general, let C be an operad, A is an C -algebra, M is an Module. The square zero extension $M \rtimes A$ is a new A -algebra We have definitions of derivation

$$\mathcal{D} \rceil \nabla_C(X, M) := \mathrm{Alg}_{C/A}(X, M \rtimes A)$$

We can form the simplicial module K(M, n) over A whose normalization $NK(M, n) \cong M$. And define $K_A(M, n) = K(M, n) \rtimes A$. We define the Andre-Quillen Cohomology of X with coefficients in M by the formula

$$D^n_C(X, M) = [X, K_A(M, m)]_{\mathrm{sAlg}/A} \cong \pi_0 \mathrm{Map}_{\mathrm{sAlg}/A}(X, K_A(M, n))$$

$$D_C^n(X, M) \cong \pi_{-n} hom_{sAlg/A}(X, K_A M)$$

$$D^n_C(X,M) = H^n N(\mathcal{D}] \nabla_C(Y,M))$$

where Y is some cofibrant model for X and N is some normalization functor from comsimplicial k-module to cochain complex.

Let $X \to Y$ be a morphism of \mathcal{F} -algebra in spectra. There is second quadrant spectral sequence with E_2 term

$$E_2^{0,0} = \operatorname{Hom}_{E_*\mathcal{F}}(E_*X, Y^*)$$

and

$$E_2^{s,t} = D_{E_*T}^s(E_*X, \Omega^t Y_*)$$

converge to

 $\pi_{t-s}(\operatorname{Map}_{Alg_F}(X,Y),\phi)$

Goerss-Hopkins Obstruction Theory

Goerss-Hopkins Obstruction Theory

Let R and S be E -local E_{∞} -rings, and let $A = E_*R$ and $B = E_*S$. Given a map $\phi A \rightarrow B$ of commutative algebras in E_*E -comodules, there exists an inductively defined sequence of obstructions valued in

 $\operatorname{Ext}_{\operatorname{Mod}_A(\operatorname{Comod}_{E_*E})}^{n+1,n}(L_{A/E_*},B)$

which vanishes iff there is an E_{∞} -ring map $\widetilde{\phi} : R \to S$ such that $E_*(\widetilde{\phi}) = \phi$.

Elliptic Cohomology

An elliptic cohomology consists of an even periodic spectrum E. An elliptic curve C over $\pi_0 E$. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the *étale* topology. For any *étale* morphism $f : \operatorname{Spec}(R) \to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum $(\mathcal{O}_{tmf}(f), C_f, \phi)$, satisfying $\pi_0 \mathcal{O}_{tmf}(f) = R$, and C_f is a generalized elliptic curve over R classified by f.

 $Tmf = \mathcal{O}_{tmf}(\overline{\mathcal{M}}_{ell} \to \overline{\mathcal{M}}_{ell})$, topological modular forms.

Topological Automorphic Forms

Theorem

let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space, \mathcal{O}^{top} on the etale site. such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \xrightarrow{G} M_{pd}^n)$$

we have

 $F_E = G^0$

where G_0 is the formal part of the p-divisible group G.

The main issue of this construction is that fro a general n-dimensional abelian variety, their associated p-divisible group are not 1-dimensional.

PEL Shimura stacks are moduli stacks of abelian varieties with the extra structure of Polarization, Endomorphisms, and Level structure . A class of PEL Shimura stacks (associated to a rational form of the unitary group U(1, n1)) whose PEL data allow for the extraction of a 1-dimensional p-divisible group satisfying the hypotheses of above theorem.

Orientations

Obstructions to H_{∞} -maps

 $H_{\infty}C$ ——— (formal groups with descent data)

homogeneous spectra $C \longrightarrow$ (formal groups)

Theorem (Ando-Hopkins-Strickland, 2004)

The rule which associates a level structure

 $l: A \to i^*G(R)$

to a map $\psi_l^E : \operatorname{Spf} R \to S_E$ given by the ring map $\pi_0 E \xrightarrow{D_A} \pi_0 E^{BA^*_+} \to R$ and the isogeny

$$\psi_l^{G/E}: i^*G \to \psi_l^*G$$

is descent data for level structure on the formal group G over S_E .

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}$, $\sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \sum_{i \in I} a_i$. We define a line bundle over G_S^k by

$$\Theta^k(\mathcal{L}) = \bigotimes_{I \subset \{1,...,k\}} (\mathcal{L}_I)^{(-1)^{|I|}}$$

And set $\Theta^0(\mathcal{L}) = \mathcal{L}$.

$$\begin{split} \Theta^{0}(\mathcal{L})_{a} &= \mathcal{L}_{a} \\ \Theta^{1}(\mathcal{L})_{a} &= \frac{\mathcal{L}_{0}}{\mathcal{L}_{a}} \\ \Theta^{2}(\mathcal{L})_{a,b} &= \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b}} \\ \Theta^{3}(\mathcal{L})_{a,b,c} &= \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b} \otimes \mathcal{L}_{a+c} \otimes \mathcal{L}_{b+c}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b} \otimes \mathcal{L}_{c} \otimes \mathcal{L}_{a+b+c}} \end{split}$$

Definition

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

1. For k > 0, s is a rigid section.

2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_{\sigma} \pi_{\sigma}^* s = s$.

3. The section

 $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

If $g: MU\langle 2k \rangle \rightarrow E$ is an orientation, then the composition

```
((\mathbb{C}P^{\infty})^k)^V \to MU\langle 2k \rangle \to E
```

represents a rigid section s of $\Theta^k(I_G(0))$

Theorem

For $0 \leq k \leq 3$, the maps of ring spectra $MU\langle 2k \rangle \rightarrow E$ are in one to one correspondence with Θ^k -structures on $\mathcal{I}(0)$ over G_E .

Theorem (Ando-Hopkins-Strickland, 2004)

Let $g: MU\langle 2k \rangle \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G,$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}} \mathbf{s} = (\psi_l^E) \mathbf{i}^* \mathbf{s}$$

And if $k \leq 3$, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic spectrum is an H_{∞} map. Zhu (2020) proved that the map $MU\langle 0 \rangle \to E$ coming from a coordinate of $\operatorname{Spf} E^0(\mathbb{C}^{\infty})$ is a H_{∞} map, since the map satisfying the condition above, which is called norm coherence.

Obstructions to E_{∞} **-maps**

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

- 1. $\lim MX_n \to MU$ is an equivalence.
- 2. $\operatorname{Map}_{E_{\infty}}(MX_1, E) \simeq Or(E)$ for each E_{∞} -ring E.
- 3. Given m>0 and an $E_\infty\text{-ring E},$ there is a pull back square

where F_m is a certain pointed space.

- 4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.
- 5. Let E denote an E_{∞} such that π_*E is p-local and p-torsion free. Then an E_{∞} -map $MX_1 \to E$ extends to an E_{∞} map $MX_P \to E$ if and only if the corresponding complex orientation of E satisfies the Ando criterion.

Theorem (Senger, 2022)

Let E denote a height ≤ 2 Landweber exact E_{∞} -ring whose homotopy groups is concentrated in even degrees. Then any complex orientation $MU \rightarrow E$ which satisfies the Ando criterion lifts uniquely up to homotopy to an E_{∞} -ring map $MU \rightarrow E$.

The proof of Senger's theorem was based on E-cohomology of some certain spaces. We have the following pullback square.

 $\mathrm{Map}_{E_{\infty}}(MU, R) \simeq Or(R)$ for a rational E_{∞} -ring R, and $\pi_1 \mathrm{Map}_{E_{\infty}}(MU, R) \cong \pi_1 Or(R) \cong 0$, if R is concentrated in even degrees.

It suffices to lift the induced complex orientation of E_p^{\wedge} . Assume that E is p-complete. So we only need to prove

$$\pi_0 \operatorname{Map}_{E_{\infty}}(MX_{p^2}, E) \to \pi_0 \operatorname{Map}_{E_{\infty}}(MX_p, E)$$

is surjective. There is a cofiber sequence.

$$\operatorname{Map}_{E_{\infty}}(MX_{p^2}, E) \to \operatorname{Map}_{E_{\infty}}(MX_p, E) \to \operatorname{Map}_*(F_{p^2}, Pic(E))$$

and a equivalence

 $\operatorname{Map}_{E_{\infty}}(F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \operatorname{pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \Sigma E).$

It suffices to show that

$$E^1(\Sigma^{\infty}F_{p^2})\simeq 0$$

Lemma (Senger , 2022) $E^{2n}(F_p) \cong E^{2n+1}(F_{p^2}) \cong 0.$

Let L_m denote the nerve of the poset of proper direct sum decomposition of \mathbb{C}^m , and $(L_m)^{\diamond}$ is its unreduced suspension.

 $F_m \simeq ((L_m)^\diamond \wedge S^{2m})_{hU(m)}.$

