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Introduction to Chromatic
Homotopy Theory



Algebraic Topology

Brown representability theorem (1962)

Generalized cohomology theories of Top←→ Spectra

Stable homotopy category (closed symmetric monoidal category)

Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra

Modern approach: ∞-category of spectra, Sp

• ring spectra: Alg(Sp)
• E∞-ring spectra : CAlg(Sp)
• H∞-ring spectra : CAlg(ho(Sp))

E⊗ E //

f⊗f
��

E

f
��

F⊗ F // F
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Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0,
CR denote the category of local Noetherian R-algebras. We define

Â1(A) := CR(R[[t]],A)

A commutative one-dimensional formal group over R is a functor

G : CR → Ab

which is isomorphic to Â1.

OG → OG×G ∼= OG ⊗OG

OG is just R[[X]] and OG ⊗OG is R[[X]]⊗R R[[Y]] = R[[X, Y]].

ϕ : R[[X]] → R[[X, Y]]
X → f(X, Y)
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Formal Group Laws

Definition
Formal group law : F ∈ R[[x1, x2]]

• F(x, 0) = F(0, x) = x (Identity)
• F(x1, x2) = F(x2, x1) (Commutativity)
• F(F(x1, x2), x3) = F(x1, F(x2, x3)) (Associativity)

There exists a ring L and Funiv(x, y) ∈ L[[x, y]]

{Formal Group Law over R} ←→ {L→ R}

such that F(x, y) ∈ R[[x, y]] over R,

f∗(Funiv(x, y)) = F(x, y).

Lazard’s Theorem
L ∼= Z[t1, t2, · · · ]
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Heights of Formal Groups

Let f(x, y) ∈ R[[x, y]]

1. If n = 0,we set [n](t) = 0.
2. If n > 0, we set [n](t) = f([n− 1](t), t).

P-series p[t] is either 0 or equals λtpn + O(tpn+1) for some n > 0.

Definition
Let vn denote th coefficient of tp

n in the p-series, f has height ≤ n if
vi = 0 fro i < n, f has height exactly n if it has height ≤ n and vn is
invertible.

Examples

1. Formal multiplicative group f(x, y) = x+ y+ xy,
[n](t) = (1+ t)n − 1. If p = 0 in R, then [p](t) = (1+ t)p − 1 = tp,
so f has height 1.

2. Formal additive group f(x, y) = x+ y, if p = 0 in R. Then
[p](t) = 0, so f has infinite height.
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Complex Oriented Cohomology Theories

Complex Orientation
Let E be cohomology theory. Then a complex orientation of E is a
choice x ∈ E2(CP∞) whcih restricts to 1 under the composite

E2(CP∞)→ E2(CP1) = E2(S2) ∼= E0(∗)

E∗(CP∞) ∼= E∗(∗)[[t]] = (π∗E)[[t]]

(π∗E)[[t]] ∼= E∗(CP∞)→ E∗(CP∞ × CP∞) ∼= (π∗E)[[x, y]]

{complex oriented cohomology theoryE} → GE = SpfE0(CP∞).

Theorem(Quillen, 1969)
MU is the universal complex oriented cohomology theory,
L ∼= π∗MU.

For E complex oriented, MU→ E, induce L = π∗MU→ π∗E.
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The Landweber Exact Functor Theorem

If we already have a ring map L→ R, can we construct a complex
oriented cohomology theory E such that R = π∗E?

E∗(X) = MU∗(X)⊗π∗MU R = MU∗(X)⊗L R

Landweber’s Exact Functor Theorem, 1976
Let M be a module over the Lazard ring L. Then M is flat overMFG if
and only if for every prime number p, the elements
v0 = p, v1, v2, · · · ∈ L form a regular sequence for M.
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Lubin-Tate Theory

Deformation of formal groups: Let G0 be a formal group over a
perfect field k with characteristic p, then a deformation of G0 to R is a
triple (G, i,Ψ) satisfying

• G is a formal group over R,
• There is a map i : k→ R/m,
• There is an isomorphism Ψ : π∗G ∼= i∗G0 of formal groups over
R/m.

Lubin-Tate’s Theorem, 1966
There is a universal formal group G over RLT = W(k)[[v1, · · · , vn − 1]]
in the following sense: for every infinitesimal thickening A of k,
there is a bijection

Hom/k(RLT,A)→ Def(A).
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Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic
spectrum E(n)

π∗E(n) = W(k)[[v1, · · · , vn−1]][β±1]

Theorem (Goerss-Hopkins-Miller, 2004)
The spectrum E(n) admits a unique E∞-ring structure.

M(k) denote the cofiber of the map
∑2kMU(p) → MU(p) given by the

multiplication by tk.

Let K(n) denote the smash product

MU(p)[v−1n ]⊗MU(p)

⊗
k ̸=pn−1

M(k).

This spectrum K(n) is called Morava K-theory. The homotopy groups
of K(n) is

π∗K(n) ∼= (π∗MU(p))[v−1n ]/(t0, t1, · · · tpn−2, tpn , · · · ) ∼= Fp[v±1n ]

Xuecai Ma Doctoral Dissertation Proposal 9 / 35



Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic
spectrum E(n)

π∗E(n) = W(k)[[v1, · · · , vn−1]][β±1]

Theorem (Goerss-Hopkins-Miller, 2004)
The spectrum E(n) admits a unique E∞-ring structure.

M(k) denote the cofiber of the map
∑2kMU(p) → MU(p) given by the

multiplication by tk.

Let K(n) denote the smash product

MU(p)[v−1n ]⊗MU(p)

⊗
k ̸=pn−1

M(k).

This spectrum K(n) is called Morava K-theory. The homotopy groups
of K(n) is

π∗K(n) ∼= (π∗MU(p))[v−1n ]/(t0, t1, · · · tpn−2, tpn , · · · ) ∼= Fp[v±1n ]

Xuecai Ma Doctoral Dissertation Proposal 9 / 35



Bousfield localization

CE the collection of E-acyclic spectra. A spectrum is E-local if every
map for every Y ∈ CE, the map Y→ X is nullhomotopic.

CE(X)→ X→ LE(X).

where LE(X) is E-local. This functor is called Bousfield localization
with respect to E. The map X→ LE(X) is characterized up to
equivalence by two properties.

1. The spectrum LE(X) is E-local.
2. The map X→ LE(X) is an E-equivalence.

• LE(n), behaves like restriction to the open substack
M≤n

FG ⊂MFG × SpecZ(p).
• LK(n), behaves like completion along the locally closed substack
Mn

FG ⊂MFG × SpecZ(p).
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Elliptic Cohomology

An elliptic cohomology consists of

1. An even periodic spectrum E .
2. An elliptic curve C over π0E.
3. ϕ : GE ∼= Ĉ

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)
There is a sheaf Otmf of E∞-ring spectra over the stackMell for the
étale topology. For any étale morphism f : Spec(R)→Mell, there is
a natural structure of elliptic spectrum (Otmf(f), Cf, ϕ), satisfying
π0Otmf(f) = R, and Cf is a generalized elliptic curve over R classified
by f.

Tmf = Otmf(Mell →Mell), topological modular forms.
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Introduction to Spectral Algebraic
Geometry



Spectral Stacks

Definition
Let X be an∞-topos, an spectrally ringed∞-topos is a limit
preserving functor F : X → CAlg(Sp)

Let A be an E∞-ring, and M be an A-module. We will say that M is
étale if the following conditions holds

1. π0M is étale over π0A..
2. πnA⊗π0A π0M ∼= πnM

Definition
A spectral Deligne-Mumford stack is a spectral ringed∞-topos
X = (X ,OX) which locally likes SpétA, for an E∞ ring A.
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Spectral Schemes

Definition
A spectral scheme is a spectrally ringed space (X,OX) which
satisfies the following conditions

1. (X, π0OX) is an ordinary scheme.

2. πnOX is quasi-coherent sheaf of π0OX module.
3. When U be an open subset of X, (U, (π0OX)|U) is affine.
πn(OX(U))→ (πnOX)(U) is an isomorphism.

4. πnOX vanishes when n < 0.

If the spectrally ringed space only satisfy the first three conditions,
then we call it a nonconnective spectral scheme.
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Spectral Varieties

Definition
A spectral variety X over an E∞-ring R is a nonconnective spectral
DM stack, such that τ≥0X→ Spetτ≥0R is proper, locally almost of
finite presentation, geometrically reduced and geometrically
connected.

• Abelian varieties over R : commutative monoidal objects of the
∞ category Var(R).

• Strict abelian varieties over R : abelian group objects of the
∞-category Var(R).
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Formal Spectral Algebraic Geometry

Adic E∞-ring A : π0A is an I adic completion ordinary ring for I ⊆ π0A.

For any finitely generated ideals I ⊂ π0A, I-completion functor

ModA → ModIA : M→ M̂I

Definition
For an adic E∞-ring A, define Spf(A) := (ShvadicA ,OShvadicA

)

Definition
A formal spectral DM stack is a spectrally ringed∞-topos
X = (X ,OX ) which admits a cover {Ui}, such that each (X|Ui ,OX|Ui)

is equivalent to SpfAi for some E∞-ring Ai
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Spectral Formal Groups

A spectral formal hyperplane is a functor

CAlgR → S

is represented Spf(C∨) for some smooth coalgebra C.

Definition
A n-dimensional formal group over a connective E∞-ring R is a
functor

Ĝ : CAlgR → ModZ

such that the composite

CAlgR → ModZ → S

is represented Spf(C∨)for some n-dimensional smooth coalgebra C.

Xuecai Ma Doctoral Dissertation Proposal 16 / 35



Spectral Formal Groups

A spectral formal hyperplane is a functor

CAlgR → S

is represented Spf(C∨) for some smooth coalgebra C.

Definition
A n-dimensional formal group over a connective E∞-ring R is a
functor
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Deformations

G0 be a p-divisible group over R0. A deformation of G0 along
ρA : A→ R0 is a pair (G, α), where G is a spectral p-divisible group
over A and α : G0 ≃ ρ∗AG .

Theorem (Lurie, 2018)
There exists a connective E∞-ring RunG0 with a morphism ρ : RunG0 → R0, and a
deformation G of G0 with the following properties:

• RunG0 is Noetherian, π0(ρ) : π0(R
un
G0) → R0 is surjective, and RunG0 is complete

with respect to the ideal ker(π0(ρ)).

• For other ρA : A→ R0 . The extension of scalars induces an equivalence
of∞-categories

MapCAlg/R0 (R
un
G0 , A) → DefG0(A, ρA).

We refer to RunG0 as the spectral deformation ring of the p-divisible group G0.
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Orientations

Definition
Let R be an E∞-ring and let X : CAlgcnτ≥0(R) → S∗ be a pointed formal
hyperplane over R. A preorientation of X is a map of pointed spaces

e : S2 → X(τ≥0(R))

Definition
A preorientation of an 1-dimensional formal group Ĝ over a E∞-ring
R is a map

e : S2 → Ω∞Ĝ(τ≥0R)

of based spaces, where the based points goes to the identity of the
group structure.
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The dualizing line of an 1-dimensional formal group Ĝ is an
R-module defined by

ωĜ := R⊗OĜ
OĜ(−η)

For every preorientation e : S2 → Ĝ(τ≥0R), there is an associated map

βe : ωĜ → Σ−2R

called the Bott map.

Definition
An orientation of a formal group is a preorientation e whose the
Bott map is an equivalence.
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Theorem (Lurie, 18)
let X be a 1-dimensional pointed formal hyperplane over R. Then
there exists an E∞-ring DX and e ∈ Or(XDX), such that for other
R′ ∈ CAlgR, evaluation on e induces a homotopy equivalence

MapCAlgR(DX,R
′)→ Or(XR′).

We refer to DX as the orientation classifer.

Lemma
Let R be an even periodic E∞-ring, G be any formal group over R.
Then there is a canonical homotopy equivalence

PreG ≃ MapFG(R)(GQR ,G)

Where GQR is the spectral Quillen formal group, whose 0-th
homotopy is the classical Quillen formal group.

The preorientation is an orientation if and only its image under the
above map is a equivalence of formal groups over R.
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Applications of Spectral Algebraic
Geometry



Elliptic Cohomology Theory

Spectral elliptic curves : spectral abelian varieties of dimension one.

Strict elliptic curves : strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion
along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)
There exists a nonconnective spectral Deligne-Mumford stackMor

ell
such that

MapSpDMnc(SpétR,Mor
ell)
∼= Ellor(R)≃

The elliptic spectrum has the E∞ structure, since the spectral stack
of oriented elliptic curve has the same underlying étale site with the
classical stack of elliptic curve.
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Topological Automorphic Forms

Theorem (Lurie, 2010-2017)
Let Mn

pd denote the moduli stack of one dimensional height n
p-divisible group, then there is a sheaf of E∞-ring space Otop on
the étale site,

such that for any

E := Otop(SpecR G→ Mn
pd)

we have
Spfπ0ECP

∞
= G0

where G0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks ( moduli stacks of abelian
varieties with the extra structure of Polarization, Endomorphisms,
and Level structure) which associated to a rational form of the
unitary group U(1, n−1)) can give a 1-dimensional p-divisible group
satisfying the conditions of this theorem.

Xuecai Ma Doctoral Dissertation Proposal 22 / 35



Topological Automorphic Forms

Theorem (Lurie, 2010-2017)
Let Mn

pd denote the moduli stack of one dimensional height n
p-divisible group, then there is a sheaf of E∞-ring space Otop on
the étale site, such that for any

E := Otop(SpecR G→ Mn
pd)

we have
Spfπ0ECP

∞
= G0

where G0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks ( moduli stacks of abelian
varieties with the extra structure of Polarization, Endomorphisms,
and Level structure) which associated to a rational form of the
unitary group U(1, n−1)) can give a 1-dimensional p-divisible group
satisfying the conditions of this theorem.

Xuecai Ma Doctoral Dissertation Proposal 22 / 35



Topological Automorphic Forms

Theorem (Lurie, 2010-2017)
Let Mn

pd denote the moduli stack of one dimensional height n
p-divisible group, then there is a sheaf of E∞-ring space Otop on
the étale site, such that for any

E := Otop(SpecR G→ Mn
pd)

we have
Spfπ0ECP

∞
= G0

where G0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks ( moduli stacks of abelian
varieties with the extra structure of Polarization, Endomorphisms,
and Level structure) which associated to a rational form of the
unitary group U(1, n−1)) can give a 1-dimensional p-divisible group
satisfying the conditions of this theorem.

Xuecai Ma Doctoral Dissertation Proposal 22 / 35



Topological Automorphic Forms

Theorem (Lurie, 2010-2017)
Let Mn

pd denote the moduli stack of one dimensional height n
p-divisible group, then there is a sheaf of E∞-ring space Otop on
the étale site, such that for any

E := Otop(SpecR G→ Mn
pd)

we have
Spfπ0ECP

∞
= G0

where G0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks ( moduli stacks of abelian
varieties with the extra structure of Polarization, Endomorphisms,
and Level structure) which associated to a rational form of the
unitary group U(1, n−1)) can give a 1-dimensional p-divisible group
satisfying the conditions of this theorem.

Xuecai Ma Doctoral Dissertation Proposal 22 / 35



E∞ structures of Morava E-theories

π∗E(n) = W(k)[[v1, · · · , vn−1]][β±1]

1. Ĝ0 is a formal group over k, viewed as a identity component of a
connected p-divisible group G0.

2. There exists a universal deformation Gun over the spectral
deformation ring RunG0 .

3. Let G0un be the identity component of Gun.
4. Let RorG0 be an orientation classifier for G

0
un.

5. EG0 = LKnRorG0 is just the spectra of Morava E-theory. We refer to
this as the Lubin-Tate spectrum.
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How to Lift a Complex Orientation
MU→ E to an E∞ Map



Obstructions→H∞-maps

H∞C //

��

( formal groups with descent data)

��
homogeneous spectra C // (formal groups)

Theorem (Ando-Hopkins-Strickland, 2004)
The rule which associates a level structure

l : A→ i∗G(R)

to a map ψEl : SpfR→ SE given by the ring map π0E
DA→ π0EBA

∗
+ → R

and the isogeny
ψ
G/E
l : i∗G→ ψ∗

l G

is descent data for level structure on the formal group G over SE.
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L is a line bundle over G. Given a subset I ⊂ {1, · · · , k}, σI : GkS → G
defined by σI(a1, . . . , ak) = Σi∈Iai.

We define a line bundle over GkS by

Θk(L) =
⊗

I⊂{1,...,k}

(LI)(−1)
|I|

And set Θ0(L) = L.

Θ0(L)a = La

Θ1(L)a =
L0
La

Θ2(L)a,b =
L0 ⊗ La+b
La ⊗ Lb

Θ3(L)a,b,c =
L0 ⊗ La+b ⊗ La+c ⊗ Lb+c
La ⊗ Lb ⊗ Lc ⊗ La+b+c
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Definition
A Θk structure on a line bundle L over a group G is a trivialization s
of the line bundle Θk(L) such that

1. For k > 0, s is a rigid section.
2. s is symmetric,i.e., for each σ ∈ Σk, we have ξσπ∗

σs = s.
3. The section s(a1,a2, . . . )⊗ s(a0 + a1,a2, . . . )−1 ⊗ s(a0,a1 +
a2, . . . )⊗ s(a0,a1, . . . )−1⊗ corresponds to 1.

If g : MU⟨2k⟩ → E is an orientation, then the composition

((CP∞)k)V → MU⟨2k⟩ → E

represents a rigid section s of Θk(IG(0))

Theorem
For 0 ≤ k ≤ 3, the maps of ring spectra MU⟨2k⟩ → E are in one to
one correspondence with Θk-structures on I(0) over GE.

Xuecai Ma Doctoral Dissertation Proposal 26 / 35



Definition
A Θk structure on a line bundle L over a group G is a trivialization s
of the line bundle Θk(L) such that

1. For k > 0, s is a rigid section.
2. s is symmetric,i.e., for each σ ∈ Σk, we have ξσπ∗

σs = s.
3. The section s(a1,a2, . . . )⊗ s(a0 + a1,a2, . . . )−1 ⊗ s(a0,a1 +
a2, . . . )⊗ s(a0,a1, . . . )−1⊗ corresponds to 1.

If g : MU⟨2k⟩ → E is an orientation, then the composition

((CP∞)k)V → MU⟨2k⟩ → E

represents a rigid section s of Θk(IG(0))

Theorem
For 0 ≤ k ≤ 3, the maps of ring spectra MU⟨2k⟩ → E are in one to
one correspondence with Θk-structures on I(0) over GE.

Xuecai Ma Doctoral Dissertation Proposal 26 / 35



Definition
A Θk structure on a line bundle L over a group G is a trivialization s
of the line bundle Θk(L) such that

1. For k > 0, s is a rigid section.
2. s is symmetric,i.e., for each σ ∈ Σk, we have ξσπ∗

σs = s.
3. The section s(a1,a2, . . . )⊗ s(a0 + a1,a2, . . . )−1 ⊗ s(a0,a1 +
a2, . . . )⊗ s(a0,a1, . . . )−1⊗ corresponds to 1.

If g : MU⟨2k⟩ → E is an orientation, then the composition

((CP∞)k)V → MU⟨2k⟩ → E

represents a rigid section s of Θk(IG(0))

Theorem
For 0 ≤ k ≤ 3, the maps of ring spectra MU⟨2k⟩ → E are in one to
one correspondence with Θk-structures on I(0) over GE.

Xuecai Ma Doctoral Dissertation Proposal 26 / 35



Definition
A Θk structure on a line bundle L over a group G is a trivialization s
of the line bundle Θk(L) such that

1. For k > 0, s is a rigid section.
2. s is symmetric,i.e., for each σ ∈ Σk, we have ξσπ∗

σs = s.
3. The section s(a1,a2, . . . )⊗ s(a0 + a1,a2, . . . )−1 ⊗ s(a0,a1 +
a2, . . . )⊗ s(a0,a1, . . . )−1⊗ corresponds to 1.

If g : MU⟨2k⟩ → E is an orientation, then the composition

((CP∞)k)V → MU⟨2k⟩ → E

represents a rigid section s of Θk(IG(0))

Theorem
For 0 ≤ k ≤ 3, the maps of ring spectra MU⟨2k⟩ → E are in one to
one correspondence with Θk-structures on I(0) over GE.

Xuecai Ma Doctoral Dissertation Proposal 26 / 35



Theorem (Ando-Hopkins-Strickland, 2004)
Let g : MU⟨2k⟩ → E be a homotopy multiplicative map, s = sg be the
section of Θk(IG(0)) as before. If the map g is H∞, then for each
level structure

A l→ i∗G,

the section s satisfy the identity

Ñ
ψ
G/E
l
s = (ψEl )i∗s

And if k ≤ 3, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic
spectrum is an H∞ map. Zhu (2020) proved that the map MU⟨0⟩ → E
coming from a coordinate of SpfE0(C∞) is a H∞ map, since the map
satisfying the condition above, which is called norm coherence.
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Obstructions to E∞-maps

Hopkins-Lawson obstruction theory (2018): There exists a diagram of
E∞-ring spectra

S→ MX1 → MX2 → MX3 → · · ·

such that the following hold:

1. limMXn → MU is an equivalence.

2. MapE∞(MX1, E) ≃ Or(E) for each E∞-ring E.

3. Given m > 0 and an E∞-ring E, there is a pull back square

MapE∞(MXm, E) //

��

MapE∞(MXm−1, E)

��
{∗} // Map∗(Fm,Pic(E))

where Fm is a certain pointed space.
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4. MXm−1 → MXm is a rational equivalence if m > 1, a p-local
equivalence if m is not a power of p, and a K(n)-local
equivalence if m > pn.

5. Let E denote an E∞ such that π∗E is p-local and p-torsion free.
Then an E∞-map MX1 → E extends to an E∞ map MXP → E if and
only if the corresponding complex orientation of E satisfies the
Ando criterion.

Theorem (Senger, 2022)
Let E denote a height ≤ 2 Landweber exact E∞-ring whose
homotopy groups is concentrated in even degrees. Then any
complex orientation MU→ E which satisfies the Ando criterion lifts
uniquely up to homotopy to an E∞-ring map MU→ E.
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The proof of Senger’s theorem was based on E-cohomology of some
certain spaces.

We have the following pullback square.

E //

��

∏
p E∧p

��
EQ // (

∏
p E∧p )Q

MapE∞(MU,R) ≃ Or(R) for a rational E∞-ring R, and
π1MapE∞(MU,R) ∼= π1Or(R) ∼= 0, if R is concentrated in even degrees.

π0MapE∞(MU, R) //

��

π0MapE∞ (MU,
∏

p E
∧
P )

��
π0Or(EQ) // π0Or((

∏
p E

∧
p )Q)

π0Or(E) //

��

π0Or(
∏

p E
∧
p )

��
π0Or(EQ) // π0Or((

∏
p E

∧
p )Q)
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It suffices to lift the induced complex orientation of E∧p .

Assume that E is p-complete. So we only need to prove

π0MapE∞(MXp2 , E)→ π0MapE∞(MXp, E)

is surjective.

There is a cofiber sequence.

MapE∞(MXp2 , E)→ MapE∞(MXp, E)→ Map∗(Fp2 ,Pic(E))

and a equivalence

MapE∞(Fm,Pic(E)) ≃ Hom(Σ∞Fm,pic(E)) ≃ Hom(Σ∞Fm,ΣE).

It suffices to show that
E1(Σ∞Fp2) ≃ 0

Xuecai Ma Doctoral Dissertation Proposal 31 / 35



It suffices to lift the induced complex orientation of E∧p .

Assume that E is p-complete. So we only need to prove

π0MapE∞(MXp2 , E)→ π0MapE∞(MXp, E)

is surjective.

There is a cofiber sequence.

MapE∞(MXp2 , E)→ MapE∞(MXp, E)→ Map∗(Fp2 ,Pic(E))

and a equivalence

MapE∞(Fm,Pic(E)) ≃ Hom(Σ∞Fm,pic(E)) ≃ Hom(Σ∞Fm,ΣE).

It suffices to show that
E1(Σ∞Fp2) ≃ 0

Xuecai Ma Doctoral Dissertation Proposal 31 / 35



It suffices to lift the induced complex orientation of E∧p .

Assume that E is p-complete. So we only need to prove

π0MapE∞(MXp2 , E)→ π0MapE∞(MXp, E)

is surjective.

There is a cofiber sequence.

MapE∞(MXp2 , E)→ MapE∞(MXp, E)→ Map∗(Fp2 ,Pic(E))

and a equivalence

MapE∞(Fm,Pic(E)) ≃ Hom(Σ∞Fm,pic(E)) ≃ Hom(Σ∞Fm,ΣE).

It suffices to show that
E1(Σ∞Fp2) ≃ 0

Xuecai Ma Doctoral Dissertation Proposal 31 / 35



Lemma (Senger, 2022)
E2n(Fp) ∼= E2n+1(Fp2) ∼= 0.

Let Lm denote the nerve of the poset of proper direct sum
decomposition of Cm, and (Lm)⋄ is its unreduced suspension.

Fm ≃ ((Lm)⋄ ∧ S2m)hU(m).
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Plan

Our question is how to lift a complex orientation MU→ E to an
E∞-map ? Especially when E is a Morava E-theory.

• What is the conceptional description of the complex orientation
in the context of spectral algebraic geometry? What is the
relation between the spectral Quillen formal group and level
structures?

• The descent data of H∞-spectrum only consider the level one
structures, what about the infinity level structures?

• Norm coherence condition in the context of spectral algebraic
geometry.
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Thanks for Your Listening !
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Questions and Answers !
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