Methods of Spectral Algebraic Geometry in Chromatic Homotopy Theory

Doctoral Dissertation Proposal

Student: Xuecai Ma

Supervisor: Yifei Zhu

1. Introduction to Chromatic Homotopy Theory

2. Introduction to Spectral Algebraic Geometry

3. Application of Spectral Algebraic Geometry

4. How to Lift a Complex Orientation $MU \rightarrow E$ to an E_{∞} Map

Introduction to Chromatic Homotopy Theory

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category)

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category) Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra

Generalized cohomology theories of $\mathsf{Top} \longleftrightarrow \mathsf{Spectra}$

Stable homotopy category (closed symmetric monoidal category)
Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra
Modern approach: ∞-category of spectra, Sp

Generalized cohomology theories of $\mathbf{Top} \longleftrightarrow$ Spectra

Stable homotopy category (closed symmetric monoidal category)
Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra
Modern approach: ∞-category of spectra, Sp

- ring spectra: Alg(Sp)
- *E*_∞-ring spectra : **CAlg(Sp)**
- H_{∞} -ring spectra : CAlg(ho(Sp))

Generalized cohomology theories of $\mathbf{Top}\longleftrightarrow$ Spectra

Stable homotopy category (closed symmetric monoidal category)
Models of Spectra: S-Modules, symmetric spectra, orthogonal spectra
Modern approach: ∞-category of spectra, Sp

- ring spectra: Alg(Sp)
- E_{∞} -ring spectra : CAlg(Sp)
- H_{∞} -ring spectra : CAlg(ho(Sp))

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

 $\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

 $\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$

A commutative one-dimensional formal group over R is a functor

 $G: C_R \to \mathbf{Ab}$

which is isomorphic to $\hat{\mathbb{A}}^1$.

Formal Groups

Let R be a complete local ring with residue filed characteristic p > 0, C_R denote the category of local Noetherian R-algebras. We define

 $\hat{\mathbb{A}}^1(A) := C_R(R[[t]], A)$

A commutative one-dimensional formal group over R is a functor

 $G: C_R \rightarrow \mathbf{Ab}$

which is isomorphic to $\hat{\mathbb{A}}^1$.

$$\mathcal{O}_G \to \mathcal{O}_{G \times G} \cong \mathcal{O}_G \otimes \mathcal{O}_G$$

 \mathcal{O}_G is just R[X] and $\mathcal{O}_G \otimes \mathcal{O}_G$ is $R[X] \otimes_R R[Y] = R[X, Y]$.

$$\phi : R[X] \to R[X, Y] X \to f(X, Y)$$

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- F(x, 0) = F(0, x) = x (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- F(x, 0) = F(0, x) = x (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

There exists a ring L and $F_{univ}(x, y) \in L[x, y]$

{Formal Group Law over R} \longleftrightarrow { $L \to R$ }

such that $F(x, y) \in R[x, y]$ over R,

 $f^*(F_{univ}(x,y)) = F(x,y).$

Formal Group Laws

Definition

Formal group law : $F \in R[[x_1, x_2]]$

- F(x, 0) = F(0, x) = x (Identity)
- $F(x_1, x_2) = F(x_2, x_1)$ (Commutativity)
- $F(F(x_1, x_2), x_3) = F(x_1, F(x_2, x_3))$ (Associativity)

There exists a ring L and $F_{univ}(x, y) \in L[x, y]$

{Formal Group Law over R} \longleftrightarrow { $L \to R$ }

such that $F(x, y) \in R[x, y]$ over R,

 $f^*(F_{univ}(x,y)) = F(x,y).$

Lazard's Theorem

 $L\cong\mathbb{Z}[t_1,t_2,\cdots]$

Xuecai Ma

Heights of Formal Groups

Let $f(x, y) \in R\llbracket x, y \rrbracket$

1. If n = 0, we set [n](t) = 0.

2. If n > 0, we set [n](t) = f([n - 1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Let $f(x, y) \in R[[x, y]]$

1. If n = 0, we set [n](t) = 0.

2. If n > 0, we set [n](t) = f([n - 1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Let $f(x, y) \in R[[x, y]]$

1. If n = 0, we set [n](t) = 0.

2. If n > 0, we set [n](t) = f([n - 1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Examples

1. Formal multiplicative group f(x, y) = x + y + xy, $[n](t) = (1 + t)^n - 1$. If p = 0 in R, then $[p](t) = (1 + t)^p - 1 = t^p$, so f has height 1. Let $f(x, y) \in R\llbracket x, y \rrbracket$

1. If n = 0, we set [n](t) = 0.

2. If n > 0, we set [n](t) = f([n - 1](t), t).

P-series p[t] is either 0 or equals $\lambda t^{p^n} + O(t^{p^n+1})$ for some n > 0.

Definition

Let v_n denote th coefficient of t^{p^n} in the p-series, f has height $\leq n$ if $v_i = 0$ fro i < n, f has height exactly n if it has height $\leq n$ and v_n is invertible.

Examples

- 1. Formal multiplicative group f(x, y) = x + y + xy, $[n](t) = (1 + t)^n - 1$. If p = 0 in R, then $[p](t) = (1 + t)^p - 1 = t^p$, so f has height 1.
- Formal additive group f(x, y) = x + y, if p = 0 in R. Then
 [p](t) = 0, so f has infinite height.

Xuecai Ma

Doctoral Dissertation Proposal

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^{\infty})$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^\infty) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^{\infty})$ which restricts to 1 under the composite

$$E^{2}(\mathbb{C}P^{\infty}) \to E^{2}(\mathbb{C}P^{1}) = E^{2}(S^{2}) \cong E^{0}(*)$$

 $E^{*}(\mathbb{CP}^{\infty}) \cong E^{*}(*)\llbracket t \rrbracket = (\pi_{*}E)\llbracket t \rrbracket$ $(\pi_{*}E)\llbracket t \rrbracket \cong E^{*}(\mathbb{CP}^{\infty}) \to E^{*}(\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}) \cong (\pi_{*}E)\llbracket [X, y] \rrbracket$ {complex oriented cohomology theory $E \rbrace \to G_{E} = \operatorname{Spf} E^{0}(\mathbb{CP}^{\infty}).$

Complex Oriented Cohomology Theories

Complex Orientation

Let E be cohomology theory. Then a complex orientation of E is a choice $x \in E^2(\mathbb{C}P^{\infty})$ which restricts to 1 under the composite

$$E^2(\mathbb{C}P^\infty) \to E^2(\mathbb{C}P^1) = E^2(S^2) \cong E^0(*)$$

 $E^*(\mathbb{CP}^{\infty}) \cong E^*(*)\llbracket t \rrbracket = (\pi_* E)[[t]]$ $(\pi_* E)[[t]] \cong E^*(\mathbb{CP}^{\infty}) \to E^*(\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty}) \cong (\pi_* E)[[X, y]]$ $\{\text{complex oriented cohomology theory} E\} \to G_F = \operatorname{Spf} E^0(\mathbb{CP}^{\infty}).$

Theorem(Quillen, 1969)

MU is the universal complex oriented cohomology theory, $L \cong \pi_* MU$.

For E complex oriented, $MU \rightarrow E$, induce $L = \pi_*MU \rightarrow \pi_*E$.

Xuecai Ma

Doctoral Dissertation Proposal

If we already have a ring map $L \rightarrow R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

If we already have a ring map $L \rightarrow R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

 $E_*(X) = MU_*(X) \otimes_{\pi_*MU} R = MU_*(X) \otimes_L R$

If we already have a ring map $L \rightarrow R$, can we construct a complex oriented cohomology theory E such that $R = \pi_* E$?

$$E_*(X) = MU_*(X) \otimes_{\pi_*MU} R = MU_*(X) \otimes_L R$$

Landweber's Exact Functor Theorem, 1976

Let *M* be a module over the Lazard ring L. Then *M* is flat over \mathcal{M}_{FG} if and only if for every prime number *p*, the elements $v_0 = p, v_1, v_2, \dots \in L$ form a regular sequence for *M*. **Deformation of formal groups:** Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

- G is a formal group over R,
- There is a map $i: k \to R/m$,
- There is an isomorphism $\Psi : \pi^* G \cong i^* G_0$ of formal groups over R/m.

Lubin-Tate Theory

Deformation of formal groups: Let G_0 be a formal group over a perfect field k with characteristic p, then a deformation of G_0 to R is a triple (G, i, Ψ) satisfying

- G is a formal group over R,
- There is a map $i: k \rightarrow R/m$,
- There is an isomorphism $\Psi : \pi^*G \cong i^*G_0$ of formal groups over R/m.

Lubin-Tate's Theorem, 1966

There is a universal formal group G over $R_{LT} = W(k)[[v_1, \dots, v_n - 1]]$ in the following sense: for every infinitesimal thickening A of k, there is a bijection

$$\operatorname{Hom}_{/k}(R_{LT}, A) \to \operatorname{Def}(A).$$

Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

$$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$$

Theorem (Goerss-Hopkins-Miller, 2004)

The spectrum E(n) admits a unique E_{∞} -ring structure.

Morava E-theories and Morava K-theories

Using Landweber exact functor theorem, there is a even periodic spectrum E(n)

$$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$$

Theorem (Goerss-Hopkins-Miller, 2004)

The spectrum E(n) admits a unique E_{∞} -ring structure.

M(k) denote the cofiber of the map $\sum^{2k} MU_{(p)} \rightarrow MU_{(p)}$ given by the multiplication by t_k .

Let K(n) denote the smash product

$$MU_{(p)}[v_n^{-1}] \otimes_{MU_{(p)}} \bigotimes_{k \neq p^n - 1} M(k).$$

This spectrum *K*(*n*) is called **Morava K-theory**. The homotopy groups of *K*(*n*) is

$$\pi_* K(n) \cong (\pi_* M U_{(p)})[v_n^{-1}]/(t_0, t_1, \cdots t_{p^n-2}, t_{p^n}, \cdots) \cong \mathbb{F}_p[v_n^{\pm 1}]$$

Xuecai Ma

Doctoral Dissertation Proposal

Bousfield localization

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

Bousfield localization

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

 $C_E(X) \to X \to L_E(X).$

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

 $C_E(X) \to X \to L_E(X).$

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \rightarrow L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_E(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

 $C_E(X) \to X \to L_E(X).$

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \rightarrow L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_E(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.
- $L_{E(n)}$, behaves like restriction to the open substack $\mathcal{M}_{FG}^{\leq n} \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.

 C_E the collection of E-acyclic spectra. A spectrum is E-local if every map for every $Y \in C_E$, the map $Y \to X$ is nullhomotopic.

 $C_E(X) \to X \to L_E(X).$

where $L_E(X)$ is E-local. This functor is called **Bousfield localization** with respect to E. The map $X \rightarrow L_E(X)$ is characterized up to equivalence by two properties.

- 1. The spectrum $L_E(X)$ is E-local.
- 2. The map $X \to L_E(X)$ is an E-equivalence.
 - $L_{E(n)}$, behaves like restriction to the open substack $\mathcal{M}_{FG}^{\leq n} \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.
 - $L_{K(n)}$, behaves like completion along the locally closed substack $\mathcal{M}_{FG}^n \subset \mathcal{M}_{FG} \times \operatorname{Spec}\mathbb{Z}_{(p)}$.

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E .
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E .
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the *étale* topology. For any *étale* morphism $f: \operatorname{Spec}(R) \to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum $(\mathcal{O}_{tmf}(f), C_f, \phi)$, satisfying $\pi_0 \mathcal{O}_{tmf}(f) = R$, and C_f is a generalized elliptic curve over R classified by f.

Elliptic Cohomology

An elliptic cohomology consists of

- 1. An even periodic spectrum E .
- 2. An elliptic curve C over $\pi_0 E$.
- 3. $\phi: G_E \cong \hat{C}$

We denote this data as (E, C, ϕ)

Theorem(Goerss-Hopkins-Miller-Lurie)

There is a sheaf \mathcal{O}_{tmf} of E_{∞} -ring spectra over the stack $\overline{\mathcal{M}}_{ell}$ for the *étale* topology. For any *étale* morphism $f : \operatorname{Spec}(R) \to \overline{\mathcal{M}}_{ell}$, there is a natural structure of elliptic spectrum ($\mathcal{O}_{tmf}(f), C_f, \phi$), satisfying $\pi_0 \mathcal{O}_{tmf}(f) = R$, and C_f is a generalized elliptic curve over R classified by f.

 $Tmf = \mathcal{O}_{tmf}(\overline{\mathcal{M}}_{ell} \rightarrow \overline{\mathcal{M}}_{ell})$, topological modular forms.

Introduction to Spectral Algebraic Geometry

Let \mathcal{X} be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F : \mathcal{X} \to \mathsf{CAlg}(\mathsf{Sp})$

Let \mathcal{X} be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F : \mathcal{X} \to \mathsf{CAlg}(\mathsf{Sp})$

Let A be an E_{∞} -ring, and M be an A-module. We will say that M is *étale* if the following conditions holds

- 1. $\pi_0 M$ is étale over $\pi_0 A$..
- 2. $\pi_n A \otimes_{\pi_0 A} \pi_0 M \cong \pi_n M$

Let \mathcal{X} be an ∞ -topos, an spectrally ringed ∞ -topos is a limit preserving functor $F : \mathcal{X} \to \mathsf{CAlg}(\mathsf{Sp})$

Let A be an E_{∞} -ring, and M be an A-module. We will say that M is *étale* if the following conditions holds

- 1. $\pi_0 M$ is étale over $\pi_0 A$..
- 2. $\pi_n A \otimes_{\pi_0 A} \pi_0 M \cong \pi_n M$

Definition

A spectral Deligne-Mumford stack is a spectral ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_X)$ which locally likes SpétA, for an E_{∞} ring A.

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.
- 4. $\pi_n \mathcal{O}_X$ vanishes when n < 0.

A spectral scheme is a spectrally ringed space (X, \mathcal{O}_X) which satisfies the following conditions

- 1. $(X, \pi_0 \mathcal{O}_X)$ is an ordinary scheme.
- 2. $\pi_n \mathcal{O}_X$ is quasi-coherent sheaf of $\pi_0 \mathcal{O}_X$ module.
- 3. When U be an open subset of X, $(U, (\pi_0 \mathcal{O}_X)|_U)$ is affine. $\pi_n(\mathcal{O}_X(U)) \to (\pi_n \mathcal{O}_X)(U)$ is an isomorphism.
- 4. $\pi_n \mathcal{O}_X$ vanishes when n < 0.

If the spectrally ringed space only satisfy the first three conditions, then we call it a nonconnective spectral scheme.

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \rightarrow \operatorname{Spet}\tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \to \operatorname{Spet}\tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

• Abelian varieties over R : commutative monoidal objects of the ∞ category Var(R).

A spectral variety X over an E_{∞} -ring R is a nonconnective spectral DM stack, such that $\tau_{\geq 0}X \to \operatorname{Spet}\tau_{\geq 0}R$ is proper, locally almost of finite presentation, geometrically reduced and geometrically connected.

- Abelian varieties over R : commutative monoidal objects of the ∞ category Var(R).
- Strict abelian varieties over R : abelian group objects of the ∞ -category Var(R).

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$.

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

 $\operatorname{Mod}_A \to \operatorname{Mod}_A' : M \to \hat{M}_I$

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

$$\operatorname{Mod}_A \to \operatorname{Mod}_A^l : M \to \hat{M}_l$$

Definition

For an adic E_{∞} -ring A, define $\operatorname{Spf}(A) := (\operatorname{Shv}_{A}^{adic}, \mathcal{O}_{\operatorname{Shv}_{A}^{adic}})$

Adic E_{∞} -ring A : $\pi_0 A$ is an I adic completion ordinary ring for $I \subseteq \pi_0 A$. For any finitely generated ideals $I \subset \pi_0 A$, I-completion functor

$$\operatorname{Mod}_A \to \operatorname{Mod}_A^l : M \to \hat{M}_l$$

Definition

For an adic
$$E_{\infty}$$
-ring A, define $\operatorname{Spf}(A) := (\operatorname{Shv}_{A}^{adic}, \mathcal{O}_{\operatorname{Shv}_{A}^{adic}})$

Definition

A formal spectral DM stack is a spectrally ringed ∞ -topos $X = (\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ which admits a cover $\{U_i\}$, such that each $(\mathcal{X}_{|U_i}, \mathcal{O}_{\mathcal{X}|U_i})$ is equivalent to SpfA_i for some E_{∞} -ring A_i

A spectral formal hyperplane is a functor

 $\mathsf{CAlg}_R \to \mathcal{S}$

is represented $\operatorname{Spf}(C^{\vee})$ for some smooth coalgebra C.

A spectral formal hyperplane is a functor

 $\mathsf{CAlg}_R \to \mathcal{S}$

is represented $\operatorname{Spf}(C^{\vee})$ for some smooth coalgebra C.

Definition

A n-dimensional formal group over a connective $E_\infty\text{-ring}\,R$ is a functor

 \hat{G} : $\mathbf{CAlg}_R \rightarrow Mod_{\mathbb{Z}}$

such that the composite

$$\mathsf{CAlg}_{R} \to \mathrm{Mod}_{\mathbb{Z}} \to \mathcal{S}$$

is represented $\operatorname{Spf}(C^{\vee})$ for some n-dimensional smooth coalgebra C.

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho : R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

• $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho) : \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal ker $(\pi_0(\rho))$.

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho : R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

- $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho) : \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal ker $(\pi_0(\rho))$.
- For other $\rho_A: A \to R_0$. The extension of scalars induces an equivalence of ∞ -categories

$$\operatorname{Map}_{\mathsf{CAlg}_{/R_0}}(R^{un}_{G_0}, A) \to \operatorname{Def}_{G_0}(A, \rho_A).$$

Theorem (Lurie, 2018)

There exists a connective E_{∞} -ring $R_{G_0}^{un}$ with a morphism $\rho : R_{G_0}^{un} \to R_0$, and a deformation G of G_0 with the following properties:

- $R_{G_0}^{un}$ is Noetherian, $\pi_0(\rho) : \pi_0(R_{G_0}^{un}) \to R_0$ is surjective, and $R_{G_0}^{un}$ is complete with respect to the ideal ker $(\pi_0(\rho))$.
- For other $\rho_A: A \to R_0$. The extension of scalars induces an equivalence of ∞ -categories

$$\operatorname{Map}_{\operatorname{\mathsf{CAlg}}_{/R_0}}(R^{un}_{G_0}, A) \to \operatorname{Def}_{G_0}(A, \rho_A).$$

We refer to $R_{G_0}^{un}$ as the spectral deformation ring of the p-divisible group G_0 .

Let R be an E_{∞} -ring and let X : $CAlg_{\tau_{\geq 0}(R)}^{cn} \to S_*$ be a pointed formal hyperplane over R. A preorientation of X is a map of pointed spaces

 $e:S^2\to X(\tau_{\geq 0}(R))$

Let R be an E_{∞} -ring and let $X : \operatorname{CAlg}_{\tau_{\geq 0}(R)}^{cn} \to S_*$ be a pointed formal hyperplane over R. A preorientation of X is a map of pointed spaces

 $e:S^2\to X(\tau_{\geq 0}(R))$

Definition

A preorientation of an 1-dimensional formal group \hat{G} over a $E_\infty\text{-ring}$ R is a map

$$e:S^2 o\Omega^\infty\hat{G}(au_{\geq 0}R)$$

of based spaces, where the based points goes to the identity of the group structure.

The dualizing line of an 1-dimensional formal group $\hat{\boldsymbol{G}}$ is an R-module defined by

$$\omega_{\hat{G}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{G}}} \mathcal{O}_{\hat{G}}(-\eta)$$

The dualizing line of an 1-dimensional formal group $\hat{\boldsymbol{G}}$ is an R-module defined by

$$\omega_{\hat{G}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{G}}} \mathcal{O}_{\hat{G}}(-\eta)$$

For every preorientation $e: S^2
ightarrow \hat{G}(au_{\geq 0}R)$, there is an associated map

$$\beta_e: \omega_{\hat{G}} \to \Sigma^{-2} R$$

called the Bott map.

The dualizing line of an 1-dimensional formal group $\hat{\boldsymbol{G}}$ is an R-module defined by

$$\omega_{\hat{G}} := \mathsf{R} \otimes_{\mathcal{O}_{\hat{G}}} \mathcal{O}_{\hat{G}}(-\eta)$$

For every preorientation $e: S^2 \rightarrow \hat{G}(\tau_{\geq 0}R)$, there is an associated map

$$\beta_e: \omega_{\hat{G}} \to \Sigma^{-2} R$$

called the Bott map.

Definition

An orientation of a formal group is a preorientation e whose the Bott map is an equivalence.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \operatorname{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathbf{CAlg}_R$, evaluation on e induces a homotopy equivalence

$$\operatorname{Map}_{\operatorname{\mathsf{CAlg}}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$$

We refer to \mathcal{D}_X as the orientation classifer.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \operatorname{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathbf{CAlg}_R$, evaluation on e induces a homotopy equivalence

$$\operatorname{Map}_{\mathsf{CAlg}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$$

We refer to \mathcal{D}_X as the orientation classifer.

Lemma

Let R be an even periodic E_{∞} -ring, G be any formal group over R. Then there is a canonical homotopy equivalence

 $\operatorname{Pre} G \simeq \operatorname{Map}_{FG(R)}(G_R^Q, G)$

Where G_R^Q is the spectral Quillen formal group, whose 0-th homotopy is the classical Quillen formal group.

Theorem (Lurie, 18)

let X be a 1-dimensional pointed formal hyperplane over R. Then there exists an E_{∞} -ring \mathcal{D}_X and $e \in \operatorname{Or}(X_{\mathcal{D}_X})$, such that for other $R' \in \mathsf{CAlg}_R$, evaluation on e induces a homotopy equivalence

 $\operatorname{Map}_{\mathsf{CAlg}_R}(\mathcal{D}_X, R') \to \operatorname{Or}(X_{R'}).$

We refer to \mathcal{D}_X as the orientation classifer.

Lemma

Let R be an even periodic E_{∞} -ring, G be any formal group over R. Then there is a canonical homotopy equivalence

 $\operatorname{Pre} G \simeq \operatorname{Map}_{FG(R)}(G_R^Q, G)$

Where G_R^Q is the spectral Quillen formal group, whose 0-th homotopy is the classical Quillen formal group.

The preorientation is an orientation if and only its image under the above map is a equivalence of formal groups over R.

Xuecai Ma

Doctoral Dissertation Proposal

Applications of Spectral Algebraic Geometry

Spectral elliptic curves : spectral abelian varieties of dimension one.

Spectral elliptic curves : spectral abelian varieties of dimension one. Strict elliptic curves : strict ableian varieties of dimensional one. Spectral elliptic curves : spectral abelian varieties of dimension one. Strict elliptic curves : strict ableian varieties of dimensional one. An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group. Spectral elliptic curves : spectral abelian varieties of dimension one.

Strict elliptic curves : strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)

There exists a nonconnective spectral Deligne-Mumford stack $\mathcal{M}_{\textit{ell}}^{\textit{or}}$ such that

 $\operatorname{Map}_{\operatorname{SpDM}^{nc}}(\operatorname{Sp\acute{e}tR}, \mathcal{M}^{or}_{ell}) \cong \operatorname{Ell}^{or}(R)^{\simeq}$

Spectral elliptic curves : spectral abelian varieties of dimension one.

Strict elliptic curves : strict ableian varieties of dimensional one.

An oriented elliptic curves is a strict elliptic curve whose completion along the identity section is an oriented formal group.

Theorem(Lurie, 2009-2018)

There exists a nonconnective spectral Deligne-Mumford stack $\mathcal{M}_{\textit{ell}}^{\textit{or}}$ such that

```
\operatorname{Map}_{\operatorname{SpDM}^{nc}}(\operatorname{Sp\acute{e}tR}, \mathcal{M}^{or}_{ell}) \cong \operatorname{Ell}^{or}(R)^{\simeq}
```

The elliptic spectrum has the E_{∞} structure, since the spectral stack of oriented elliptic curve has the same underlying *étale* site with the classical stack of elliptic curve.

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site,

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \xrightarrow{G} M_{pd}^n)$$

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \xrightarrow{G} M_{pd}^n)$$

we have

$$\mathrm{Spf}\pi_0 E^{\mathbb{C}P^\infty} = G^0$$

where G^0 is the formal part of the p-divisible group G.

Let M_{pd}^n denote the moduli stack of one dimensional height n p-divisible group, then there is a sheaf of E_{∞} -ring space \mathcal{O}^{top} on the *étale* site, such that for any

$$E := \mathcal{O}^{top}(\operatorname{Spec} R \stackrel{G}{\to} M^n_{pd})$$

we have

$${
m Spf}\pi_0 E^{{\Bbb CP}^\infty} = G^0$$

where G^0 is the formal part of the p-divisible group G.

Models: A class of PEL Shimura stacks (moduli stacks of abelian varieties with the extra structure of Polarization, Endomorphisms, and Level structure) which associated to a rational form of the unitary group U(1, n-1)) can give a 1-dimensional p-divisible group satisfying the conditions of this theorem.

Xuecai Ma

Doctoral Dissertation Proposal

$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$

Ĝ₀ is a formal group over k, viewed as a identity component of a connected p-divisible group G₀.

$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$

- Ĝ₀ is a formal group over k, viewed as a identity component of a connected p-divisible group G₀.
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .

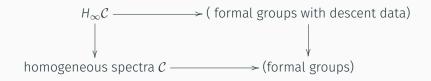
$\pi_* E(n) = W(k) \llbracket v_1, \cdots, v_{n-1} \rrbracket [\beta^{\pm 1}]$

- Ĝ₀ is a formal group over k, viewed as a identity component of a connected p-divisible group G₀.
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .
- 4. Let $R_{G_0}^{or}$ be an orientation classifier for G_{un}^0 .

$\pi_* E(n) = W(k) [v_1, \cdots, v_{n-1}] [\beta^{\pm 1}]$

- Ĝ₀ is a formal group over k, viewed as a identity component of a connected p-divisible group G₀.
- 2. There exists a universal deformation G_{un} over the spectral deformation ring $R_{G_n}^{un}$.
- 3. Let G_{un}^0 be the identity component of G_{un} .
- 4. Let $R_{G_0}^{or}$ be an orientation classifier for G_{un}^0 .
- 5. $E_{G_0} = L_{K_n} R_{G_0}^{or}$ is just the spectra of Morava E-theory. We refer to this as the Lubin-Tate spectrum.

How to Lift a Complex Orientation $MU \rightarrow E$ to an E_{∞} Map



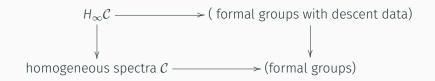


The rule which associates a level structure

 $l: A \rightarrow i^*G(R)$

Xuecai Ma

Doctoral Dissertation Proposal



The rule which associates a level structure

 $l: A \rightarrow i^*G(R)$

to a map ψ_l^E : Spf $R \to S_E$ given by the ring map $\pi_0 E \xrightarrow{D_A} \pi_0 E^{BA^*_+} \to R$



The rule which associates a level structure

 $l: A \rightarrow i^*G(R)$

to a map ψ_l^E : $\operatorname{Spf} R \to S_E$ given by the ring map $\pi_0 E \xrightarrow{D_A} \pi_0 E^{BA^*_+} \to R$ and the isogeny

$$\psi_l^{G/E}: i^*G \to \psi_l^*G$$

is descent data for level structure on the formal group G over S_E .

Xuecai Ma

Doctoral Dissertation Proposal

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}, \sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \Sigma_{i \in I} a_i$.

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}, \sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \sum_{i \in I} a_i$.

We define a line bundle over $G_{\rm S}^k$ by

$$\Theta^k(\mathcal{L}) = \bigotimes_{l \subset \{1, \dots, k\}} (\mathcal{L}_l)^{(-1)^{|l|}}$$

And set $\Theta^0(\mathcal{L}) = \mathcal{L}$.

 \mathcal{L} is a line bundle over G. Given a subset $I \subset \{1, \dots, k\}, \sigma_I : G_S^k \to G$ defined by $\sigma_I(a_1, \dots, a_k) = \sum_{i \in I} a_i$.

We define a line bundle over $G_{\rm S}^k$ by

$$\Theta^k(\mathcal{L}) = \bigotimes_{l \subset \{1, \dots, k\}} (\mathcal{L}_l)^{(-1)^{|l|}}$$

And set $\Theta^0(\mathcal{L}) = \mathcal{L}$.

$$\begin{split} \Theta^{0}(\mathcal{L})_{a} &= \mathcal{L}_{a} \\ \Theta^{1}(\mathcal{L})_{a} &= \frac{\mathcal{L}_{0}}{\mathcal{L}_{a}} \\ \Theta^{2}(\mathcal{L})_{a,b} &= \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b}} \\ \Theta^{3}(\mathcal{L})_{a,b,c} &= \frac{\mathcal{L}_{0} \otimes \mathcal{L}_{a+b} \otimes \mathcal{L}_{a+c} \otimes \mathcal{L}_{b+c}}{\mathcal{L}_{a} \otimes \mathcal{L}_{b} \otimes \mathcal{L}_{c} \otimes \mathcal{L}_{a+b+c}} \end{split}$$

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_{\sigma} \pi_{\sigma}^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_{\sigma} \pi_{\sigma}^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

If $g: MU\langle 2k \rangle \rightarrow E$ is an orientation, then the composition

 $((\mathbb{C}P^{\infty})^k)^V \to MU\langle 2k \rangle \to E$

represents a rigid section s of $\Theta^k(I_G(0))$

A Θ^k structure on a line bundle \mathcal{L} over a group G is a trivialization s of the line bundle $\Theta^k(\mathcal{L})$ such that

- 1. For k > 0, s is a rigid section.
- 2. s is symmetric, i.e., for each $\sigma \in \Sigma_k$, we have $\xi_{\sigma} \pi_{\sigma}^* s = s$.
- 3. The section $s(a_1, a_2, ...) \otimes s(a_0 + a_1, a_2, ...)^{-1} \otimes s(a_0, a_1 + a_2, ...) \otimes s(a_0, a_1, ...)^{-1} \otimes$ corresponds to 1.

If $g: MU(2k) \rightarrow E$ is an orientation, then the composition

 $((\mathbb{C}P^{\infty})^k)^V \to MU\langle 2k \rangle \to E$

represents a rigid section s of $\Theta^k(I_G(0))$

Theorem

For $0 \le k \le 3$, the maps of ring spectra $MU(2k) \to E$ are in one to one correspondence with Θ^k -structures on $\mathcal{I}(0)$ over G_E .

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G,$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}} S = (\psi_l^E) i^* S$$

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G,$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}} S = (\psi_l^E) i^* S$$

And if $k \leq 3$, the converse is true.

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G,$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}} S = (\psi_l^E) i^* S$$

And if $k \leq 3$, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic spectrum is an H_∞ map.

Let $g: MU(2k) \to E$ be a homotopy multiplicative map, $s = s_g$ be the section of $\Theta^k(I_G(0))$ as before. If the map g is H_∞ , then for each level structure

$$A \stackrel{l}{\rightarrow} i^*G,$$

the section s satisfy the identity

$$\widetilde{N}_{\psi_l^{G/E}} S = (\psi_l^E) i^* S$$

And if $k \leq 3$, the converse is true.

Using this theorem, they proved the σ orientation of an elliptic spectrum is an H_{∞} map. Zhu (2020) proved that the map $MU(0) \rightarrow E$ coming from a coordinate of $SpfE^0(\mathbb{C}^{\infty})$ is a H_{∞} map, since the map satisfying the condition above, which is called norm coherence.

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

1. $\lim MX_n \to MU$ is an equivalence.

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

- 1. Iim $MX_n \rightarrow MU$ is an equivalence.
- 2. $\operatorname{Map}_{E_{\infty}}(MX_1, E) \simeq Or(E)$ for each E_{∞} -ring E.

Hopkins-Lawson obstruction theory (2018): There exists a diagram of E_{∞} -ring spectra

$$\mathbb{S} \to MX_1 \to MX_2 \to MX_3 \to \cdots$$

such that the following hold:

- 1. $\lim MX_n \to MU$ is an equivalence.
- 2. $\operatorname{Map}_{E_{\infty}}(MX_1, E) \simeq Or(E)$ for each E_{∞} -ring E.
- 3. Given m > 0 and an E_{∞} -ring E, there is a pull back square

where F_m is a certain pointed space.

4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.

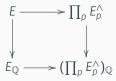
- 4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.
- 5. Let E denote an E_{∞} such that π_*E is p-local and p-torsion free. Then an E_{∞} -map $MX_1 \rightarrow E$ extends to an E_{∞} map $MX_P \rightarrow E$ if and only if the corresponding complex orientation of E satisfies the Ando criterion.

- 4. $MX_{m-1} \rightarrow MX_m$ is a rational equivalence if m > 1, a p-local equivalence if m is not a power of p, and a K(n)-local equivalence if $m > p^n$.
- 5. Let E denote an E_{∞} such that π_*E is p-local and p-torsion free. Then an E_{∞} -map $MX_1 \rightarrow E$ extends to an E_{∞} map $MX_P \rightarrow E$ if and only if the corresponding complex orientation of E satisfies the Ando criterion.

Theorem (Senger, 2022)

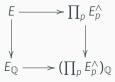
Let E denote a height ≤ 2 Landweber exact E_{∞} -ring whose homotopy groups is concentrated in even degrees. Then any complex orientation $MU \rightarrow E$ which satisfies the Ando criterion lifts uniquely up to homotopy to an E_{∞} -ring map $MU \rightarrow E$. The proof of Senger's theorem was based on E-cohomology of some certain spaces.

We have the following pullback square.



The proof of Senger's theorem was based on E-cohomology of some certain spaces.

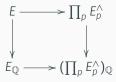
We have the following pullback square.



 $\operatorname{Map}_{E_{\infty}}(MU, R) \simeq Or(R)$ for a rational E_{∞} -ring R, and $\pi_1 \operatorname{Map}_{E_{\infty}}(MU, R) \cong \pi_1 Or(R) \cong 0$, if R is concentrated in even degrees.

The proof of Senger's theorem was based on E-cohomology of some certain spaces.

We have the following pullback square.



 $\operatorname{Map}_{E_{\infty}}(MU, R) \simeq Or(R)$ for a rational E_{∞} -ring R, and $\pi_1 \operatorname{Map}_{E_{\infty}}(MU, R) \cong \pi_1 Or(R) \cong 0$, if R is concentrated in even degrees.

It suffices to lift the induced complex orientation of E_p^{\wedge} . Assume that E is p-complete. So we only need to prove

 $\pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p^{2}},E) \to \pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p},E)$

is surjective.

It suffices to lift the induced complex orientation of E_p^{\wedge} . Assume that E is p-complete. So we only need to prove

$$\pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p^{2}},E) \rightarrow \pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p},E)$$

is surjective.

There is a cofiber sequence.

 $\operatorname{Map}_{E_{\infty}}(MX_{p^{2}}, E) \to \operatorname{Map}_{E_{\infty}}(MX_{p}, E) \to \operatorname{Map}_{*}(F_{p^{2}}, \operatorname{Pic}(E))$

and a equivalence

 $\operatorname{Map}_{E_{\infty}}(F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \Sigma E).$

It suffices to lift the induced complex orientation of E_p^{\wedge} . Assume that E is p-complete. So we only need to prove

$$\pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p^{2}},E) \rightarrow \pi_{0}\mathrm{Map}_{E_{\infty}}(MX_{p},E)$$

is surjective.

There is a cofiber sequence.

$$\operatorname{Map}_{E_{\infty}}(MX_{p^2}, E) \to \operatorname{Map}_{E_{\infty}}(MX_p, E) \to \operatorname{Map}_*(F_{p^2}, \operatorname{Pic}(E))$$

and a equivalence

 $\operatorname{Map}_{E_{\infty}}(F_m, \operatorname{Pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \operatorname{pic}(E)) \simeq \operatorname{Hom}(\Sigma^{\infty}F_m, \Sigma E).$

It suffices to show that

$$E^1(\Sigma^{\infty}F_{p^2})\simeq 0$$

Lemma (Senger, 2022) $E^{2n}(F_p) \cong E^{2n+1}(F_{p^2}) \cong 0.$ Lemma (Senger, 2022) $E^{2n}(F_p) \cong E^{2n+1}(F_{p^2}) \cong 0.$

Let L_m denote the nerve of the poset of proper direct sum decomposition of \mathbb{C}^m , and $(L_m)^{\diamond}$ is its unreduced suspension.

$$F_m \simeq ((L_m)^\diamond \wedge S^{2m})_{hU(m)}.$$

• What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?

- What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?
- The descent data of H_{∞} -spectrum only consider the level one structures, what about the infinity level structures?

- What is the conceptional description of the complex orientation in the context of spectral algebraic geometry? What is the relation between the spectral Quillen formal group and level structures?
- The descent data of H_{∞} -spectrum only consider the level one structures, what about the infinity level structures?
- Norm coherence condition in the context of spectral algebraic geometry.

Thanks for Your Listening !

Xuecai Ma

Doctoral Dissertation Proposal

Questions and Answers !

Xuecai Ma

Doctoral Dissertation Proposal